in

Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene

  • 1.

    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos120, 321–326 (2011).

    Article  Google Scholar 

  • 2.

    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology80, 1150–1156 (1999).

    Article  Google Scholar 

  • 3.

    Gurevitch, J., Curtis, P. S. & Jones, M. H. Meta-analysis in ecology. Adv. Ecol. Res.32, 199–247 (2001).

    CAS  Article  Google Scholar 

  • 4.

    IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. https://www.ipbes.net/sites/default/files/downloads/spm_unedited_advance_for_posting_htn.pdf (2019).

  • 5.

    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol.25, 345–353 (2010).

    Article  Google Scholar 

  • 6.

    Garibaldi, L. A. et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett.14, 1062–1072 (2011).

    Article  Google Scholar 

  • 7.

    Deguines, N., Julliard, R., Flores, M. & Fontaine, C. Functional homogenization of flower visitor communities with urbanization. Ecol. Evol.6, 1967–1976 (2016).

    Article  Google Scholar 

  • 8.

    Burkle, L. A., Marlin, J. C. & Knight, T. M. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science339, 1611–1615 (2013).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science313, 351–354 (2006).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Winfree, R., Bartomeus, I. & Cariveau, D. P. Native pollinators in anthropogenic habitats. Annu. Rev. Ecol. Evol. Syst.42, 1 (2011).

    Article  Google Scholar 

  • 11.

    IPBES. Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (2016).

  • 12.

    Kremen, C. et al. Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land‐use change. Ecol. Lett.10, 299–314 (2007).

    Article  Google Scholar 

  • 13.

    Knight, T. M. et al. Reflections on, and visions for, the changing field of pollination ecology. Ecol. Lett.21, 1282–1295 (2018).

    CAS  Article  Google Scholar 

  • 14.

    Aguilar, R., Ashworth, L., Galetto, L. & Aizen, M. A. Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol. Lett.9, 968–980 (2006).

    Article  Google Scholar 

  • 15.

    McKechnie, I. M. & Sargent, R. D. Do plant traits influence a species’ response to habitat disturbance? A meta-analysis. Biol. Conserv.168, 69–77 (2013).

    Article  Google Scholar 

  • 16.

    Ashman, T-L. et al. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology85, 2408–2421 (2004).

    Article  Google Scholar 

  • 17.

    Bennett, J. M. et al. GloPL, Global data base on pollen limitation of plant reproduction. Sci. Data5, 180249 (2018).

    CAS  Article  Google Scholar 

  • 18.

    Lajeunesse, M. J., Rosenberg, M. S. & Jennions, M. D. Phylogenetic nonindependence and meta-analysis. Handbook of Meta-Analysis in Ecology and Evolution. 284–299 (Princeton University Press, Princeton, NJ, 2013).

  • 19.

    Knight, T. M. et al. Pollen limitation of plant reproduction: pattern and process. Annu. Rev. Ecol. Evol. Syst. 36, 467–497 (2005).

    Article  Google Scholar 

  • 20.

    Bateman, A. J. lntra-sexual selection in Drosophila. Heredity2, 349–368 (1948).

    CAS  Article  Google Scholar 

  • 21.

    Haig, D. & Westoby, M. On limits to seed production. Am. Nat.131, 757–759 (1988).

    Article  Google Scholar 

  • 22.

    Burd, M. The Haig-Westoby model revisited. Am. Nat.171, 400–404 (2008).

    Article  Google Scholar 

  • 23.

    Aizen, M. A. & Harder, L. D. Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality. Ecology88, 271–281 (2007).

    Article  Google Scholar 

  • 24.

    Burns, J. H. et al. Plant traits moderate pollen limitation of introduced and native plants: a phylogenetic meta-analysis. New Phytol. 223, 2063–2075 (2019).

    Article  Google Scholar 

  • 25.

    Vamosi, J. C., Steets, J. A. & Ashman, T-L. Drivers of pollen limitation: macroecological interactions between breeding system, rarity, and diversity. Plant Ecol. Divers.6, 171–180 (2013).

    Article  Google Scholar 

  • 26.

    Harrison, T. & Winfree, R. Urban drivers of plant-pollinator interactions. Funct. Ecol.29, 879–888 (2015).

    Article  Google Scholar 

  • 27.

    Baldock, K. C. R. et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B Biol. Sci.282, 20142849 (2015).

    Article  Google Scholar 

  • 28.

    Ashworth, L., Aguilar, R., Galetto, L. & Aizen, M. A. Why do pollination generalist and specialist plant species show similar reproductive susceptibility to habitat fragmentation? J. Ecol.92, 717–719 (2004).

    Article  Google Scholar 

  • 29.

    Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun.10, 1018 (2019).

    ADS  Article  Google Scholar 

  • 30.

    Koski, M. H., Ison, J. L., Padilla, A., Pham, A. Q. & Galloway, L. F. Linking pollinator efficiency to patterns of pollen limitation: small bees exploit the plant–pollinator mutualism. Proc. R. Soc. B Biol. Sci.285, 20180635 (2018).

    Article  Google Scholar 

  • 31.

    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol.19, 915–918 (2009).

    CAS  Article  Google Scholar 

  • 32.

    González-Varo, J. P., Arroyo, J. & Aparicio, A. Effects of fragmentation on pollinator assemblage, pollen limitation and seed production of Mediterranean myrtle (Myrtus communis). Biol. Conserv.142, 1058–1065 (2009).

    Article  Google Scholar 

  • 33.

    Geldmann, J. & González-Varo, J. P. Conserving honey bees does not help wildlife. Science359, 392–393 (2018).

    ADS  Article  Google Scholar 

  • 34.

    Holzschuh, A., Dormann, C. F., Tscharntke, T. & Steffan-Dewenter, I. Mass-flowering crops enhance wild bee abundance. Oecologia172, 477–484 (2013).

    Article  Google Scholar 

  • 35.

    Thomann, M., Imbert, E., Devaux, C. & Cheptou, P.-O. Flowering plants under global pollinator decline. Trends Plant Sci.18, 353–359 (2013).

    CAS  Article  Google Scholar 

  • 36.

    Cruden, R. W. Pollen grains: why so many? in Pollen and Pollination 143–165 (Springer Vienna, 2000). https://doi.org/10.1007/978-3-7091-6306-1_8.

  • 37.

    Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of Meta-Analysis in Ecology and Evolution. (Princeton University Press, 2013).

  • 38.

    Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-Analysis. (John Wiley & Sons, 2011).

  • 39.

    Hurtt, G. C. et al. Harmonization of Global Land Use Change and Management for the Period 2015-2300. Version 20190529. Earth System Grid Federation. https://doi.org/10.22033/ESGF/input4MIPs.10468 (2019).

  • 40.

    R Development Core Team. R: A Language and Environment for Statistical Computing. version 3.6.3 (R Foundation for Statistical Computing, Vienna, Austria, 2020) https://www.R-project.org.

  • 41.

    Oduor, A. M. O., Leimu, R. & Kleunen, M. Invasive plant species are locally adapted just as frequently and at least as strongly as native plant species. J. Ecol.104, 957–968 (2016).

    Article  Google Scholar 

  • 42.

    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature506, 89–92 (2014).

    ADS  CAS  Article  Google Scholar 

  • 43.

    Pearse, W. D. et al. pez: phylogenetics for the environmental sciences. Bioinformatics31, 2888–2890 (2015).

    CAS  Article  Google Scholar 

  • 44.

    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics35, 526–528 (2019).

    CAS  Article  Google Scholar 

  • 45.

    Knight, T. M., Steets, J. A. & Ashman, T-L. A quantitative synthesis of pollen supplementation experiments highlights the contribution of resource reallocation to estimates of pollen limitation. Am. J. Bot.93, 271–277 (2006).

    Article  Google Scholar 

  • 46.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw.36, 1–48 (2010).

    Article  Google Scholar 

  • 47.

    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat.6, 65–70 (1979).

    MathSciNet  MATH  Google Scholar 


  • Source: Ecology - nature.com

    Shrinking deep learning’s carbon footprint

    3 Questions: Asegun Henry on five “grand thermal challenges” to stem the tide of global warming