in

Light limitation regulates the response of autumn terrestrial carbon uptake to warming

[adace-ad id="91168"]
  • 1.

    Nemani, R. R. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).

    CAS  Google Scholar 

  • 2.

    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    CAS  Google Scholar 

  • 3.

    Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Change Biol. 17, 2385–2399 (2011).

    Google Scholar 

  • 4.

    Buitenwerf, R., Rose, L. & Higgins, S. I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Change 5, 364–368 (2015).

    Google Scholar 

  • 5.

    Fridley, J. D., Lynn, J. S., Grime, J. P. & Askew, A. P. Longer growing seasons shift grassland vegetation towards more-productive species. Nat. Clim. Change 6, 865–868 (2016).

    Google Scholar 

  • 6.

    Schwartz, M. D., Ahas, R. & Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Change Biol. 12, 343–351 (2006).

    Google Scholar 

  • 7.

    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).

    Google Scholar 

  • 8.

    Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).

    Google Scholar 

  • 9.

    Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).

    CAS  Google Scholar 

  • 10.

    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).

    CAS  Google Scholar 

  • 11.

    Sun, Y. et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358, eaam5747 (2017).

    Google Scholar 

  • 12.

    Guanter, L. et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl Acad. Sci. USA 111, E1327–E1333 (2014).

    CAS  Google Scholar 

  • 13.

    Richardson, A. D. et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 560, 368–371 (2018).

    CAS  Google Scholar 

  • 14.

    Ueyama, M., Iwata, H. & Harazono, Y. Autumn warming reduces the CO2 sink of a black spruce forest in interior Alaska based on a nine-year eddy covariance measurement. Glob. Change Biol. 20, 1161–1173 (2014).

    Google Scholar 

  • 15.

    Barichivich, J. et al. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob. Change Biol. 19, 3167–3183 (2013).

    Google Scholar 

  • 16.

    Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).

    CAS  Google Scholar 

  • 17.

    Porcar-Castell, A. et al. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J. Exp. Bot. 65, 4065–4095 (2014).

    CAS  Google Scholar 

  • 18.

    Krause, G. H. & Weis, E. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349 (1991).

    CAS  Google Scholar 

  • 19.

    Jeong, S. J. et al. Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests. Remote Sens. Environ. 190, 178–187 (2017).

    Google Scholar 

  • 20.

    Monteith, J. L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 9, 747–766 (1972).

    Google Scholar 

  • 21.

    Wohlfahrt, G. et al. Trade-offs between global warming and day length on the start of the carbon uptake period in seasonally cold ecosystems. Geophys. Res. Lett. 40, 6136–6142 (2013).

    Google Scholar 

  • 22.

    Anav, A. et al. Evaluation of land surface models in reproducing satellite derived leaf area index over the high-latitude northern hemisphere. Part II: Earth system models. Remote Sens. 5, 3637–3661 (2013).

    Google Scholar 

  • 23.

    Hu, J., Moore, D. J. P., Burns, S. P. & Monson, R. K. Longer growing seasons lead to less carbon sequestration by a subalpine forest. Glob. Change Biol. 16, 771–783 (2010).

    Google Scholar 

  • 24.

    Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009).

    CAS  Google Scholar 

  • 25.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    CAS  Google Scholar 

  • 26.

    Karl, T. R. & Trenberth, K. E. Modern global climate change. Science 302, 1719–1723 (2003).

    CAS  Google Scholar 

  • 27.

    Huang, M. et al. Velocity of change in vegetation productivity over northern high latitudes. Nat. Ecol. Evol. 1, 1649–1654 (2017).

    Google Scholar 

  • 28.

    Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).

    CAS  Google Scholar 

  • 29.

    Piao, S. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Change 7, 359–363 (2017).

    CAS  Google Scholar 

  • 30.

    Keenan, T. F. & Riley, W. J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Change 8, 825–828 (2018).

    CAS  Google Scholar 

  • 31.

    Shen, M. et al. No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade. Proc. Natl Acad. Sci. USA 110, E2329–E2329 (2013).

    CAS  Google Scholar 

  • 32.

    Zhang, G. et al. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. ISPRS J. Photogramm. Remote Sens. 106, 157–171 (2015).

    Google Scholar 

  • 33.

    Zhang, Y. et al. Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America. Remote Sens. Environ. 183, 154–169 (2016).

    Google Scholar 

  • 34.

    Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, 1–6 (2011).

    Google Scholar 

  • 35.

    Zhang, Y. et al. On the relationship between sub-daily instantaneous and daily total gross primary production: implications for interpreting satellite-based SIF retrievals. Remote Sens. Environ. 205, 276–289 (2018).

    Google Scholar 

  • 36.

    Joiner, J. et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 6, 2803–2823 (2013).

    Google Scholar 

  • 37.

    Köhler, P. et al. Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: first results and intersensor comparison to OCO-2. Geophys. Res. Lett. 45, 10456–10463 (2018).

    Google Scholar 

  • 38.

    Zhang, Y., Joiner, J., Gentine, P. & Zhou, S. Reduced solar-induced chlorophyll fluorescence from GOME-2 during Amazon drought caused by dataset artifacts. Glob. Change Biol. 24, 2229–2230 (2018).

    Google Scholar 

  • 39.

    Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439 (2005).

    Google Scholar 

  • 40.

    Dušek, J., Čížková, H., Stellner, S., Czerný, R. & Květ, J. Fluctuating water table affects gross ecosystem production and gross radiation use efficiency in a sedge-grass marsh. Hydrobiologia 692, 57–66 (2012).

    Google Scholar 

  • 41.

    Pugh, C. A., Reed, D. E., Desai, A. R. & Sulman, B. N. Wetland flux controls: how does interacting water table levels and temperature influence carbon dioxide and methane fluxes in northern Wisconsin? Biogeochemistry 137, 15–25 (2018).

    CAS  Google Scholar 

  • 42.

    Migliavacca, M. et al. Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake. Agric. For. Meteorol. 151, 1325–1337 (2011).

    Google Scholar 

  • 43.

    Roerink, G. J., Menenti, M. & Verhoef, W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int. J. Remote Sens. 21, 1911–1917 (2000).

    Google Scholar 

  • 44.

    Piao, S., Fang, J., Zhou, L., Ciais, P. & Zhu, B. Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Change Biol. 12, 672–685 (2006).

    Google Scholar 

  • 45.

    Gonsamo, A., Chen, J. M. & D’Odorico, P. Deriving land surface phenology indicators from CO2 eddy covariance measurements. Ecol. Indic. 29, 203–207 (2013).

    CAS  Google Scholar 

  • 46.

    Gu, L. Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299, 2035–2038 (2003).

    Google Scholar 

  • 47.

    Sims, D. A. et al. Parallel adjustments in vegetation greenness and ecosystem CO2 exchange in response to drought in a Southern California chaparral ecosystem. Remote Sens. Environ. 103, 289–303 (2006).

    Google Scholar 


  • Source: Ecology - nature.com

    Progressive nitrogen limitation across the Tibetan alpine permafrost region

    Behavioural responses of white sharks to specific baits during cage diving ecotourism