in

Linear infrastructure habitats increase landscape-scale diversity of plants but not of flower-visiting insects

  • 1.

    Bergman, K.-O., Dániel-Ferreira, J., Milberg, P., Öckinger, E. & Westerberg, L. Butterflies in Swedish grasslands benefit from forest and respond to landscape composition at different spatial scales. Landsc. Ecol. 33, 2189–2204. https://doi.org/10.1007/s10980-018-0732-y (2018).

    Article  Google Scholar 

  • 2.

    Cousins, S. A. O., Auffret, A. G., Lindgren, J. & Tränk, L. Regional-scale land-cover change during the 20th century and its consequences for biodiversity. Ambio 44, 17–27. https://doi.org/10.1007/s13280-014-0585-9 (2015).

    Article  PubMed Central  Google Scholar 

  • 3.

    Eriksson, O., Cousins, S. A. O. & Bruun, H. H. Land-use history and fragmentation of traditionally managed grasslands in Scandinavia. J. Veg. Sci. 13, 743–748. https://doi.org/10.1111/j.1654-1103.2002.tb02102.x (2002).

    Article  Google Scholar 

  • 4.

    Tyler, T. et al. Recent changes in the frequency of plant species and vegetation types in Scania, S Sweden, compared to changes during the twentieth century. Biodivers. Conserv. 29, 709–728. https://doi.org/10.1007/s10531-019-01906-5 (2020).

    Article  Google Scholar 

  • 5.

    Thomas, J. A. Butterfly communities under threat. Science 353, 216–218. https://doi.org/10.1126/science.aaf8838 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 6.

    Bommarco, R., Lundin, O., Smith, H. G. & Rundlöf, M. Drastic historic shifts in bumble-bee community composition in Sweden. Proc. R. Soc. B 279, 309–315. https://doi.org/10.1098/rspb.2011.0647 (2012).

    Article  Google Scholar 

  • 7.

    Marini, L. et al. Contrasting effects of habitat area and connectivity on evenness of pollinator communities. Ecography 37, 544–551. https://doi.org/10.1111/j.1600-0587.2013.00369.x (2014).

    Article  Google Scholar 

  • 8.

    Ferreira, P. A., Boscolo, D. & Viana, B. F. What do we know about the effects of landscape changes on plant–pollinator interaction networks?. Ecol. Indic. 31, 35–40. https://doi.org/10.1016/j.ecolind.2012.07.025 (2013).

    Article  Google Scholar 

  • 9.

    Larsen, T. H., Williams, N. M. & Kremen, C. Extinction order and altered community structure rapidly disrupt ecosystem functioning: altered community structure disrupts functioning. Ecol. Lett. 8, 538–547. https://doi.org/10.1111/j.1461-0248.2005.00749.x (2005).

    Article  PubMed  Google Scholar 

  • 10.

    Vanneste, T. et al. Plant diversity in hedgerows and road verges across Europe. J. Appl. Ecol. 57, 1244–1257. https://doi.org/10.1111/1365-2664.13620 (2020).

    Article  Google Scholar 

  • 11.

    Phillips, B. B. et al. Enhancing road verges to aid pollinator conservation: a review. Biol. Conserv. 250, 108687. https://doi.org/10.1016/j.biocon.2020.108687 (2020).

  • 12.

    Berg, Å., Bergman, K.-O., Wissman, J., Żmihorski, M. & Öckinger, E. Power-line corridors as source habitat for butterflies in forest landscapes. Biol. Conserv. 201, 320–326. https://doi.org/10.1016/j.biocon.2016.07.034 (2016).

    Article  Google Scholar 

  • 13.

    Lundholm, J. T. & Richardson, P. J. MINI-REVIEW: Habitat analogues for reconciliation ecology in urban and industrial environments. J. Appl. Ecol. 47, 966–975. https://doi.org/10.1111/j.1365-2664.2010.01857.x (2010).

    Article  Google Scholar 

  • 14.

    Cranmer, L., McCollin, D. & Ollerton, J. Landscape structure influences pollinator movements and directly affects plant reproductive success. Oikos 121, 562–568. https://doi.org/10.1111/j.1600-0706.2011.19704.x (2012).

    Article  Google Scholar 

  • 15.

    Van Geert, A., Van Rossum, F. & Triest, L. Do linear landscape elements in farmland act as biological corridors for pollen dispersal? J. Ecol. 98, 178–187. https://doi.org/10.1111/j.1365-2745.2009.01600.x (2010).

    Article  Google Scholar 

  • 16.

    Lázaro-Lobo, A. & Ervin, G. N. A global examination on the differential impacts of roadsides on native vs. exotic and weedy plant species. Glob. Ecol. Conserv. 17, e00555. https://doi.org/10.1016/j.gecco.2019.e00555 (2019).

    Article  Google Scholar 

  • 17.

    Dubé, C., Pellerin, S. & Poulin, M. Do power line rights-of-way facilitate the spread of non-peatland and invasive plants in bogs and fens?. Botany 89, 91–103. https://doi.org/10.1139/B10-089 (2011).

    Article  Google Scholar 

  • 18.

    Fahrig, L. & Rytwinski, T. Effects of Roads on Animal Abundance: an Empirical Review and Synthesis. Ecol. Soc. 14(1): 21. http://www.ecologyandsociety.org/vol14/iss1/art21/ (2009).

  • 19.

    Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143, 1307–1316. https://doi.org/10.1016/j.biocon.2010.02.009 (2010).

    Article  Google Scholar 

  • 20.

    Keilsohn, W., Narango, D. L. & Tallamy, D. W. Roadside habitat impacts insect traffic mortality. J. Insect Conserv. 22, 183–188. https://doi.org/10.1007/s10841-018-0051-2 (2018).

    Article  Google Scholar 

  • 21.

    Gardiner, M. M., Riley, C. B., Bommarco, R. & Öckinger, E. Rights-of-way: a potential conservation resource. Front. Ecol. Environ. 16, 149–158. https://doi.org/10.1002/fee.1778 (2018).

    Article  Google Scholar 

  • 22.

    Phillips, B. B., Gaston, K. J., Bullock, J. M. & Osborne, J. L. Road verges support pollinators in agricultural landscapes, but are diminished by heavy traffic and summer cutting. J. Appl. Ecol. 56, 2316–2327. https://doi.org/10.1111/1365-2664.13470 (2019).

    Article  Google Scholar 

  • 23.

    Wagner, D. L., Metzler, K. J. & Frye, H. Importance of transmission line corridors for conservation of native bees and other wildlife. Biol. Conserv. 235, 147–156. https://doi.org/10.1016/j.biocon.2019.03.042 (2019).

    Article  Google Scholar 

  • 24.

    Wojcik, V. A. & Buchmann, S. Pollinator conservation and management on electrical transmission and roadside rights-of-way: a review. J. Pollinat. Ecol. 7, 16–26 (2012).

    Article  Google Scholar 

  • 25.

    Stenmark, M. Infrastrukturens gräs-och buskmarker. Hur stora arealer gräs och buskmarker finns i anslutning till transportinfrastruktur och bidrar dessa till miljömålsarbetet? Infrastrukturens gräs-och buskmarker. Jordbruksverket Rapport 2012:36 (2012).

  • 26.

    Jeusset, A. et al. Can linear transportation infrastructure verges constitute a habitat and/or a corridor for biodiversity in temperate landscapes? A systematic review protocol. Environ. Evid. 7, 5. https://doi.org/10.1186/s13750-016-0056-9 (2016).

    Article  Google Scholar 

  • 27.

    Crist, T. O., Veech, J. A., Gering, J. C. & Summerville, K. S. Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity. Am. Nat. 162, 734–743. https://doi.org/10.1086/378901 (2003).

    Article  PubMed  Google Scholar 

  • 28.

    With, K. A. Are landscapes more than the sum of their patches?. Landsc. Ecol. 31, 969–980. https://doi.org/10.1007/s10980-015-0328-8 (2016).

    Article  Google Scholar 

  • 29.

    Cornell, H. V. & Harrison, S. P. What are species pools and when are they important?. Annu. Rev. Ecol. Evol. Syst. 45, 45–67. https://doi.org/10.1146/annurev-ecolsys-120213-091759 (2014).

    Article  Google Scholar 

  • 30.

    Cornell, H. V. & Lawton, J. H. Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J. Anim. Ecol. 61, 1. https://doi.org/10.2307/5503 (1992).

    Article  Google Scholar 

  • 31.

    Steinert, M., Moe, S. R., Sydenham, M. A. K. & Eldegard, K. Different cutting regimes improve species and functional diversity of insect-pollinated plants in power-line clearings. Ecosphere 9, e02509. https://doi.org/10.1002/ecs2.2509 (2018).

    Article  Google Scholar 

  • 32.

    Gagic, V. et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B Biol. Sci. 282, 20142620. https://doi.org/10.1098/rspb.2014.2620 (2015).

    Article  Google Scholar 

  • 33.

    Chao, A., Chiu, C.-H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324. https://doi.org/10.1146/annurev-ecolsys-120213-091540 (2014).

    Article  Google Scholar 

  • 34.

    Vellend, M., Cornwell, W. K., Magnuson-Ford, K. & Mooers, A. O. Measuring phylogenetic biodiversity. In Biological Diversity: Frontiers in Measurement and Assessment 194–207 (Oxford University Press, 2011).

  • 35.

    Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  • 36.

    Fahrig, L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 40, 1649–1663. https://doi.org/10.1111/jbi.12130 (2013).

    Article  Google Scholar 

  • 37.

    Hill, B. & Bartomeus, I. The potential of electricity transmission corridors in forested areas as bumblebee habitat. R. Soc. Open Sci. 3, 160525. https://doi.org/10.1098/rsos.160525 (2016).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571. https://doi.org/10.1016/j.tree.2009.04.011 (2009).

    Article  PubMed  Google Scholar 

  • 39.

    Krauss, J. et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 13, 597–605. https://doi.org/10.1111/j.1461-0248.2010.01457.x (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Grusell, E. & Miliander, S. Fältmanual för skötsel av kraftledningsgatans biotoper. https://www.svk.se/contentassets/2f77f2d04b7b451495013f4de5fa7409/bilaga-5-faltmanual-for-skotsel-av-kraftledningsgatans-biotoper.pdf (2011).

  • 41.

    Zeiter, M., Stampfli, A. & Newbery, D. M. Recruitment limitation constrains local species richness and productivity in dry grassland. Ecology 87, 942–951. https://doi.org/10.1890/0012-9658(2006)87[942:RLCLSR]2.0.CO;2 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 42.

    Chaudron, C., Chauvel, B. & Isselin-Nondedeu, F. Effects of late mowing on plant species richness and seed rain in road verges and adjacent arable fields. Agric. Ecosyst. Environ. 232, 218–226. https://doi.org/10.1016/j.agee.2016.03.047 (2016).

    Article  Google Scholar 

  • 43.

    Angold, P. G. The impact of a road upon adjacent heathland vegetation: effects on plant species composition. J. Appl. Ecol. 34, 409–417 (1997).

    Article  Google Scholar 

  • 44.

    Watmough, S. A., Rabinowitz, T. & Baker, S. The impact of pollutants from a major northern highway on an adjacent hardwood forest. Sci. Total Environ. 579, 409–419. https://doi.org/10.1016/j.scitotenv.2016.11.081 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 45.

    Andersson, P., Koffman, A., Sjödin, N. E. & Johansson, V. Roads may act as barriers to flying insects: species composition of bees and wasps differs on two sides of a large highway. Nat. Conserv. 18, 47–59. https://doi.org/10.3897/natureconservation.18.12314 (2017).

    Article  Google Scholar 

  • 46.

    Öckinger, E. & Smith, H. G. Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes. J. Appl. Ecol. 44, 50–59. https://doi.org/10.1111/j.1365-2664.2006.01250.x (2006).

    Article  Google Scholar 

  • 47.

    Krauss, J., Klein, A.-M., Steffan-Dewenter, I. & Tscharntke, T. Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodivers. Conserv. 13, 1427–1439. https://doi.org/10.1023/B:BIOC.0000021323.18165.58 (2004).

    Article  Google Scholar 

  • 48.

    Thiele, J., Kellner, S., Buchholz, S. & Schirmel, J. Connectivity or area: what drives plant species richness in habitat corridors?. Landsc. Ecol. 33, 173–181. https://doi.org/10.1007/s10980-017-0606-8 (2018).

    Article  Google Scholar 

  • 49.

    Lampinen, J., Heikkinen, R. K., Manninen, P., Ryttäri, T. & Kuussaari, M. Importance of local habitat conditions and past and present habitat connectivity for the species richness of grassland plants and butterflies in power line clearings. Biodivers. Conserv. 27, 217–233. https://doi.org/10.1007/s10531-017-1430-9 (2018).

    Article  Google Scholar 

  • 50.

    Pettersson, L. B., Arnberg, H. & Mellbrand, K. Svensk Dagfjärilsövervakning Årsrapport 2018. (2018).

  • 51.

    Orrock, J. L., Curler, G. R., Danielson, B. J. & Coyle, D. R. Large-scale experimental landscapes reveal distinctive effects of patch shape and connectivity on arthropod communities. Landsc. Ecol. 26, 1361–1372. https://doi.org/10.1007/s10980-011-9656-5 (2011).

    Article  Google Scholar 

  • 52.

    Clough, Y. et al. Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity. Ecol. Lett. 17, 1168–1177. https://doi.org/10.1111/ele.12325 (2014).

    Article  Google Scholar 

  • 53.

    Grab, H. et al. Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science 363, 282–284. https://doi.org/10.1126/science.aat6016 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 54.

    Williams, N. M. et al. Ecological and life-history traits predict bee species responses to environmental disturbances. Biol. Conserv. 143, 2280–2291. https://doi.org/10.1016/j.biocon.2010.03.024 (2010).

    Article  Google Scholar 

  • 55.

    Helmus, M. R. & Ives, A. R. Phylogenetic diversity—area curves. Ecology 93, S31–S43. https://doi.org/10.1890/11-0435.1 (2012).

    Article  Google Scholar 

  • 56.

    Cameron, S. A., Hines, H. M. & Williams, P. H. A comprehensive phylogeny of the bumble bees (Bombus). Biol. J. Linn. Soc. 91, 161–188. https://doi.org/10.1111/j.1095-8312.2007.00784.x (2007).

    Article  Google Scholar 

  • 57.

    Eneland, A. Ängs- och betesmarksinventeringen. Metodik för inventering från och med 2016. Jordbruksverket Rapport 2017:9 (2017).

  • 58.

    Pollard, E. A method for assessing changes in the abundance of butterflies. Biol. Conserv. 12, 115–134. https://doi.org/10.1016/0006-3207(77)90065-9 (1977).

    Article  Google Scholar 

  • 59.

    ESRI. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute (2018). https://desktop.arcgis.com/en/arcmap/.

  • 60.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2019).


  • Source: Ecology - nature.com

    Mismatch of thermal optima between performance measures, life stages and species of spiny lobster

    Field geology at a distance