in

Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach

  • 1.

    Boskey, A. L., Wright, T. M. & Blank, R. D. Collagen and bone strength. J. Bone Miner. Res. 14, 330–335. https://doi.org/10.1359/jbmr.1999.14.3.330 (1999).

    CAS  Article  PubMed  Google Scholar 

  • 2.

    Fratzl, P. In Collagen (ed Fratzl, P.) 1–13 (Springer, Berlin, 2008).

  • 3.

    Dehring, K. A., Smukler, A. R., Roessler, B. J. & Morris, M. D. correlating changes in collagen secondary structure with aging and defective type II collagen by Raman spectroscopy. Appl. Spectrosc. 60, 366–372 (2006).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Shoulders, M. D. & Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Mostaço-Guidolin, L. B. et al. Collagen morphology and texture analysis: From statistics to classification. Sci. Rep. 3, 2190. https://doi.org/10.1038/srep02190 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Schrof, S., Varga, P., Galvis, L., Raum, K. & Masic, A. 3D Raman mapping of the collagen fibril orientation in human osteonal lamellae. J. Struct. Biol. 187, 266–275. https://doi.org/10.1016/j.jsb.2014.07.001 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 7.

    Viguet-Carrin, S., Garnero, P. & Delmas, P. D. The role of collagen in bone strength. Osteoporos. Int. 17, 319–336. https://doi.org/10.1007/s00198-005-2035-9 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    West, P., Torzilli, P., Chen, C., Lin, P. & Camacho, N. Fourier transform infrared imaging spectroscopy analysis of collagenase-induced cartilage degradation. J. Biomed. Opt. 10, 014015 (2005).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Wang, X., Zhai, M., Zhao, Y. & Yin, J. A review of articular cartilage and osteoarthritis studies by Fourier transform infrared spectroscopic imaging. Ann. Joint 3, 1–9 (2018).

    Article  Google Scholar 

  • 10.

    Lee, Y.-C. et al. Evidence of preserved collagen in an Early Jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy. Nat. Commun. 8, 14220. https://doi.org/10.1038/ncomms14220 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Ambrose, S. H. & Krigbaum, J. Bone chemistry and bioarchaeology. J. Anthropol. Archaeol. 22, 193–199. https://doi.org/10.1016/S0278-4165(03)00033-3 (2003).

    Article  Google Scholar 

  • 13.

    13Katzenberg, M. A. In Biological Anthropology of the Human Skeleton (eds M. Katzenberg, A. & Saunders, S. R.) 413–441 (Wiley-Liss, Hoboken, 2000).

  • 14.

    Fewlass, H. et al. Pretreatment and gaseous radiocarbon dating of 40–100 mg archaeological bone. Sci. Rep. 9, 5342. https://doi.org/10.1038/s41598-019-41557-8 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Pothier Bouchard, G. et al. Portable FTIR for on-site screening of archaeological bone intended for ZooMS collagen fingerprint analysis. J. Archaeol. Sci. Rep. 26, 101862. https://doi.org/10.1016/j.jasrep.2019.05.027 (2019).

    Article  Google Scholar 

  • 16.

    Kaal, J., López-Costas, O. & Martínez, A. Diagenetic effects on pyrolysis fingerprints of extracted collagen in archaeological human bones from NW Spain, as determined by pyrolysis-GC-MS. J. Archaeol. Sci. 65, 1–10. https://doi.org/10.1016/j.jas.2015.11.001 (2016).

    CAS  Article  Google Scholar 

  • 17.

    Van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695 (1999).

    Article  Google Scholar 

  • 18.

    Dobberstein, R. C. et al. Archaeological collagen: Why worry about collagen diagenesis?. Archaeol. Anthropol. Sci. 1, 31–42. https://doi.org/10.1007/s12520-009-0002-7 (2009).

    Article  Google Scholar 

  • 19.

    Harbeck, M. & Grupe, G. Experimental chemical degradation compared to natural diagenetic alteration of collagen: Implications for collagen quality indicators for stable isotope analysis. Archaeol. Anthropol. Sci. 1, 43–57. https://doi.org/10.1007/s12520-009-0004-5 (2009).

    Article  Google Scholar 

  • 20.

    Collins, M. J., Riley, M. S., Child, A. M. & Turner-Walker, G. A basic mathematical simulation of the chemical degradation of ancient collagen. J. Archaeol. Sci. 22, 175–183. https://doi.org/10.1006/jasc.1995.0019 (1995).

    Article  Google Scholar 

  • 21.

    France, C. A. M., Thomas, D. B., Doney, C. R. & Madden, O. FT-Raman spectroscopy as a method for screening collagen diagenesis in bone. J. Archaeol. Sci. 42, 346–355. https://doi.org/10.1016/j.jas.2013.11.020 (2014).

    CAS  Article  Google Scholar 

  • 22.

    Chadefaux, C., Le Hô, A.-S., Bellot-Gurlet, L. & Reiche, I. Curve-fitting Micro-ATR-FTIR studies of the amide I and II bands of type I collagen in archaeological bone materials. E-Preserv. Sci. Morana RTD 6, 129–137 (2009).

    CAS  Google Scholar 

  • 23.

    Sponheimer, M. et al. Saving old bones: A non-destructive method for bone collagen prescreening. Sci. Rep. 9, 13928. https://doi.org/10.1038/s41598-019-50443-2 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Goldenberg, L., Regev, L., Mintz, E. & Boaretto, E. Dating reassembled collagen from fossil bones. Radiocarbon 59, 1487–1496. https://doi.org/10.1017/rdc.2017.69 (2017).

    CAS  Article  Google Scholar 

  • 25.

    Yizhaq, M. et al. Quality controlled radiocarbon dating of bones and charcoal from the early pre-pottery neolithic B (PPNB) of Motza (Israel). Radiocarbon 47, 193–206. https://doi.org/10.1017/s003382220001969x (2005).

    CAS  Article  Google Scholar 

  • 26.

    Baker, M. J. et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771–1791. https://doi.org/10.1038/nprot.2014.110 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Belbachir, K., Noreen, R., Gouspillou, G. & Petibois, C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal. Bioanal. Chem. 395, 829–837. https://doi.org/10.1007/s00216-009-3019-y (2009).

    CAS  Article  PubMed  Google Scholar 

  • 28.

    de Campos Vidal, B. & Mello, M. L. S. Collagen type I amide I band infrared spectroscopy. Micron 42, 283–289. https://doi.org/10.1016/j.micron.2010.09.010 (2011).

    CAS  Article  Google Scholar 

  • 29.

    Figueiredo, M., Gamelas, J. & Martins, A. In Infrared Spectroscopy-Life and Biomedical Sciences (ed Theophile, T.) (InTech, 2012).

  • 30.

    Hanifi, A., McCarthy, H., Roberts, S. & Pleshko, N. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues. PLoS ONE 8, e64822. https://doi.org/10.1371/journal.pone.0064822 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Kong, J. & Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 39, 549–559. https://doi.org/10.1111/j.1745-7270.2007.00320.x (2007).

    CAS  Article  PubMed  Google Scholar 

  • 32.

    Stani, C., Vaccari, L., Mitri, E. & Birarda, G. FTIR investigation of the secondary structure of type I collagen: New insight into the amide III band. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 229, 118006. https://doi.org/10.1016/j.saa.2019.118006 (2020).

    CAS  Article  Google Scholar 

  • 33.

    Ramachandran, G. & Kartha, G. Structure of collagen. Nature 174, 269–270 (1954).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Ramachandran, G. & Kartha, G. Structure of collagen. Nature 176, 593–595 (1955).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Rich, A. & Crick, F. The molecular structure of collagen. J. Mol. Biol. 3, 483–484 (1961).

    CAS  Article  Google Scholar 

  • 36.

    Egli, J., Schnitzer, T., Dietschreit, J. C., Ochsenfeld, C. & Wennemers, H. Why proline? Influence of ring-size on the collagen triple helix. Org. Lett. 22, 348–351 (2019).

    Article  Google Scholar 

  • 37.

    Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenergetics 1767, 1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004 (2007).

    CAS  Article  Google Scholar 

  • 38.

    Surovell, T. A. & Stiner, M. C. Standardizing infra-red measures of bone mineral crystallinity: An experimental approach. J. Archaeol. Sci. 28, 633–642. https://doi.org/10.1006/jasc.2000.0633 (2001).

    Article  Google Scholar 

  • 39.

    Garvie-Lok, S. J., Varney, T. L. & Katzenberg, M. A. Preparation of bone carbonate for stable isotope analysis: The effects of treatment time and acid concentration. J. Archaeol. Sci. 31, 763–776. https://doi.org/10.1016/j.jas.2003.10.014 (2004).

    Article  Google Scholar 

  • 40.

    Hollund, H. I., Ariese, F., Fernandes, R., Jans, M. M. E. & Kars, H. Testing an alternative high-throughput tool for investigating bone diagenesis: FTIR in attenuated total reflection (ATR) mode. Archaeometry 55, 507–532. https://doi.org/10.1111/j.1475-4754.2012.00695.x (2013).

    CAS  Article  Google Scholar 

  • 41.

    Berna, F., Matthews, A. & Weiner, S. Solubilities of bone mineral from archaeological sites: The recrystallization window. J. Archaeol. Sci. 31, 867–882. https://doi.org/10.1016/j.jas.2003.12.003 (2004).

    Article  Google Scholar 

  • 42.

    Lebon, M., Reiche, I., Frohlich, F., Bahain, J. J. & Falgueres, C. Characterization of archaeological burnt bones: Contribution of a new analytical protocol based on derivative FTIR spectroscopy and curve fitting of the nu1nu3 PO4 domain. Anal. Bioanal. Chem. 392, 1479–1488 (2008).

    CAS  Article  Google Scholar 

  • 43.

    Thompson, T. J. U., Gauthier, M. & Islam, M. The application of a new method of Fourier Transform Infrared Spectroscopy to the analysis of burned bone. J. Archaeol. Sci. 36, 910–914. https://doi.org/10.1016/j.jas.2008.11.013 (2009).

    Article  Google Scholar 

  • 44.

    Lebon, M. et al. New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. J. Archaeol. Sci. 37, 2265–2276. https://doi.org/10.1016/j.jas.2010.03.024 (2010).

    Article  Google Scholar 

  • 45.

    Dal Sasso, G. et al. Bone diagenesis variability among multiple burial phases at Al Khiday (Sudan) investigated by ATR-FTIR spectroscopy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 463, 168–179. https://doi.org/10.1016/j.palaeo.2016.10.005 (2016).

    Article  Google Scholar 

  • 46.

    Toffolo, M. B., Brink, J. S. & Berna, F. Bone diagenesis at the Florisbad spring site, Free State Province (South Africa): Implications for the taphonomy of the Middle and Late Pleistocene faunal assemblages. J. Archaeol. Sci. Rep. 4, 152–163. https://doi.org/10.1016/j.jasrep.2015.09.001 (2015).

    Article  Google Scholar 

  • 47.

    Lebon, M., Reiche, I., Gallet, X., Bellot-Gurlet, L. & Zazzo, A. Rapid quantification of bone collagen content by ATR-FTIR spectroscopy. Radiocarbon 58, 131–145. https://doi.org/10.1017/rdc.2015.11 (2016).

    CAS  Article  Google Scholar 

  • 48.

    Pestle, W. J. et al. Hand-held Raman spectroscopy as a pre-screening tool for archaeological bone. J. Archaeol. Sci. 58, 113–120. https://doi.org/10.1016/j.jas.2015.03.027 (2015).

    CAS  Article  Google Scholar 

  • 49.

    Madden, O., Chan, D. M. W., Dundon, M. & France, C. A. M. Quantifying collagen quality in archaeological bone: Improving data accuracy with benchtop and handheld Raman spectrometers. J. Archaeol. Sci. Rep. 18, 596–605. https://doi.org/10.1016/j.jasrep.2017.11.034 (2018).

    Article  Google Scholar 

  • 50.

    Dal Sasso, G., Angelini, I., Maritan, L. & Artioli, G. Raman hyperspectral imaging as an effective and highly informative tool to study the diagenetic alteration of fossil bones. Talanta 179, 167–176. https://doi.org/10.1016/j.talanta.2017.10.059 (2018).

    CAS  Article  Google Scholar 

  • 51.

    López-Costas, O. & Müldner, G. Fringes of the empire: Diet and cultural change at the Roman to post-Roman transition in NW Iberia. Am. J. Phys. Anthropol. 161, 141–154. https://doi.org/10.1002/ajpa.23016 (2016).

    Article  PubMed  Google Scholar 

  • 52.

    López-Costas, O. Antropología de los restos óseos humanos de Galicia: estudio de la población romano y medieval gallega. Doctoral thesis, University of Granada, (2012).

  • 53.

    Petibois, C., Gouspillou, G., Wehbe, K., Delage, J.-P. & Déléris, G. Analysis of type I and IV collagens by FT-IR spectroscopy and imaging for a molecular investigation of skeletal muscle connective tissue. Anal. Bioanal. Chem. 386, 1961–1966. https://doi.org/10.1007/s00216-006-0828-0 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 54.

    Haris, P. I. & Severcan, F. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J. Mol. Catal. B Enzym. 7, 207–221. https://doi.org/10.1016/S1381-1177(99)00030-2 (1999).

    CAS  Article  Google Scholar 

  • 55.

    Goormaghtigh, E., Ruysschaert, J.-M. & Raussens, V. Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys. J . 90, 2946–2957. https://doi.org/10.1529/biophysj.105.072017 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Paschalis, E. P. et al. Spectroscopic characterization of collagen cross-links in bone. J. Bone Miner. Res. 16, 1821–1828. https://doi.org/10.1359/jbmr.2001.16.10.1821 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 57.

    D’Elia, M. et al. Evaluation of possible contamination sources in the 14C analysis of bone samples by FTIR spectroscopy. Radiocarbon 49, 201–210. https://doi.org/10.1017/s0033822200042120 (2007).

    CAS  Article  Google Scholar 

  • 58.

    Karkanas, P., Bar-Yosef, O., Goldberg, P. & Weiner, S. Diagenesis in prehistoric caves: The use of minerals that form in situ to assess the completeness of the archaeological record. J. Archaeol. Sci. 27, 915–929. https://doi.org/10.1006/jasc.1999.0506 (2000).

    Article  Google Scholar 

  • 59.

    López-Costas, O., Lantes-Suárez, Ó. & Martínez Cortizas, A. Chemical compositional changes in archaeological human bones due to diagenesis: Type of bone vs soil environment. J. Archaeol. Sci. 67, 43–51. https://doi.org/10.1016/j.jas.2016.02.001 (2016).

    CAS  Article  Google Scholar 

  • 60.

    Trueman, C. N., Privat, K. & Field, J. Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 160–167. https://doi.org/10.1016/j.palaeo.2008.03.038 (2008).

    Article  Google Scholar 

  • 61.

    Trueman, C. N. G., Behrensmeyer, A. K., Tuross, N. & Weiner, S. Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: Diagenetic mechanisms and the role of sediment pore fluids. J. Archaeol. Sci. 31, 721–739. https://doi.org/10.1016/j.jas.2003.11.003 (2004).

    Article  Google Scholar 

  • 62.

    Salesse, K. et al. Variability of bone preservation in a confined environment: The case of the catacomb of Sts Peter and Marcellinus (Rome, Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 416, 43–54. https://doi.org/10.1016/j.palaeo.2014.07.021 (2014).

    Article  Google Scholar 

  • 63.

    Weiner, S. Microarchaeology: Beyond the Visible Archaeological Record (Cambridge University Press, Cambridge, 2010).

    Google Scholar 

  • 64.

    Pate, F. D., Hutton, J. T. & Norrish, K. Ionic exchange between soil solution and bone: Toward a predictive model. Appl. Geochem. 4, 303–316. https://doi.org/10.1016/0883-2927(89)90034-6 (1989).

    CAS  Article  Google Scholar 

  • 65.

    Nielsen-Marsh, C. M. & Hedges, R. E. M. Patterns of diagenesis in bone I: The effects of site environments. J. Archaeol. Sci. 27, 1139–1150. https://doi.org/10.1006/jasc.1999.0537 (2000).

    Article  Google Scholar 

  • 66.

    Weiner, S. & Bar-Yosef, O. States of preservation of bones from prehistoric sites in the Near East: A survey. J. Archaeol. Sci. 17, 187–196. https://doi.org/10.1016/0305-4403(90)90058-D (1990).

    Article  Google Scholar 

  • 67.

    Weiner, S., Goldberg, P. & Bar-Yosef, O. Bone preservation in Kebara cave, Israel using on-site Fourier transform infrared spectrometry. J. Archaeol. Sci. 20, 613–627. https://doi.org/10.1006/jasc.1993.1037 (1993).

    Article  Google Scholar 

  • 68.

    Weiner, S., Goldberg, P. & Bar-Yosef, O. Three-dimensional distribution of minerals in the sediments of Hayonim Cave, Israel: Diagenetic processes and archaeological implications. J. Archaeol. Sci. 29, 1289–1308. https://doi.org/10.1006/jasc.2001.0790 (2002).

    Article  Google Scholar 

  • 69.

    Jans, M. M. E., Nielsen-Marsh, C. M., Smith, C. I., Collins, M. J. & Kars, H. Characterisation of microbial attack on archaeological bone. J. Archaeol. Sci. 31, 87–95. https://doi.org/10.1016/j.jas.2003.07.007 (2004).

    Article  Google Scholar 

  • 70.

    Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451. https://doi.org/10.1016/0305-4403(90)90007-r (1990).

    Article  Google Scholar 

  • 71.

    López-Costas, O., Müldner, G. & Martínez Cortizas, A. Diet and lifestyle in Bronze Age Northwest Spain: The collective burial of Cova do Santo. J. Archaeol. Sci. 55, 209–218. https://doi.org/10.1016/j.jas.2015.01.009 (2015).

    Article  Google Scholar 

  • 72.

    Lopez-Costas, O. Taphonomy and burial context of the Roman/post-Roman funerary areas (2nd to 6th centuries AD) of A Lanzada, NW Spain. Estudos do Quaternário, APEQ 12, 55–67 (2015).

    Article  Google Scholar 

  • 73.

    Collins, M. J. & Galley, P. Towards an optimal method of archaeological collagen extraction: The influence of pH and grinding. Ancient Biomolecules 2, 209–222 (1998).

    CAS  Google Scholar 

  • 74.

    Boskey, A. & Camacho, N. P. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28, 2465–2478. https://doi.org/10.1016/j.biomaterials.2006.11.043 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 75.

    Kim, M., Bi, X., Horton, W., Spencer, R. & Camacho, N. Fourier transform infrared imaging spectroscopic analysis of tissue engineered cartilage: Histologic and biochemical correlations. J. Biomed. Opt. 10, 031105 (2005).

    ADS  Article  Google Scholar 

  • 76.

    Heinly, J. H., Guerin, H. L., Auerbach, J. D., Siskey, R. L. & Villarraga, M. L. In 56th Annual Meeting of the Orthopaedic Research Society Poster No. 1466 (2010.).

  • 77.

    Mark, H. & Workman, J. Jr. Chemometrics: Derivatives in spectroscopy, Part I-the behavior of the derivative. Spectrosc. Eugene 18, 32–37 (2003).

    CAS  Google Scholar 

  • 78.

    Rieppo, L. et al. Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage. Osteoarthr. Cartil. 20, 451–459. https://doi.org/10.1016/j.joca.2012.01.010 (2012).

    CAS  Article  Google Scholar 

  • 79.

    Ami, D., Mereghetti, P. & Doglia, S. M. In Multivariate Analysis in Management, Engineering and the Sciences (eds de Freitas, L. V. & de Freitas, A. P. B. R.) https://www.intechopen.com/books/multivariate-analysis-in-management-engineering-and-the-sciences/multivariate-analysis-for-fourier-transform-infrared-spectra-of-complex-biological-systems-and-proce (Intech Open, 2013).

  • 80.

    Saarakkala, S., Rieppo, L., Rieppo, J. & Jurvelin, J. In Microscopy: Science, Technology, Applications and Education Vol. 1 (eds Méndez-Vilas, A. & Díaz, J.) 403–414 (Formatex, 2010).

  • 81.

    Smith, B. C. (CRC Press, Boca Raton, 2011).

  • 82.

    Eriksson, L., Johansson, E., Kettaneh-Wold, N. & Wold, S. Introduction to Multi- and Megavariate Data Analysis using Projection Methods (PCA & PLS) (Umetrics AB, Umeå, 1999).

    Google Scholar 

  • 83.

    Garson, G. D. In Blue Book Series (Statistical Associates Publishers, Asheboro, 2016).

  • 84.

    SmartPLS 3 (SmartPLS GmbH, Boenningstedt, 2015).


  • Source: Ecology - nature.com

    Deep learning-assisted comparative analysis of animal trajectories with DeepHL

    Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization