in

Lizards and rabbits may increase Chagas infection risk in the Mediterranean-type ecosystem of South America

  • 1.

    Swei, A., Meentemeyer, R. & Briggs, C. J. Influence of abiotic and environmental factors on the density and infection prevalence of Ixodes pacificus (Acari: Ixodidae) with Borrelia burgdorferi. J. Med. Entomol. 48, 20–28 (2011).

  • 2.

    Gottdenker, N. L., Chaves, L. F., Calzada, J. E., Saldaña, A. & Carroll, C. R. Host life history strategy, species diversity, and habitat influence Trypanosoma cruzi vector infection in changing landscapes. PLoS Negl. Trop. Dis. 6, e1884 (2012).

    • Article
    • Google Scholar
  • 3.

    Gould, E. A. & Higgs, S. Impact of climate change and other factors on emerging arbovirus diseases. Trans. R. Soc. Trop. Med. Hyg. 103, 109–121 (2009).

  • 4.

    Pongsiri, M. J. et al. Biodiversity loss affects global disease ecology. Bioscience 59, 945–954 (2009).

    • Article
    • Google Scholar
  • 5.

    Gürtler, R. E. & Cardinal, M. V. Reservoir host competence and the role of domestic and commensal hosts in the transmission of Trypanosoma cruzi. Acta Trop. 151, 32–50 (2015).

    • Article
    • Google Scholar
  • 6.

    Brownstein, J. S., Skelly, D. K., Holford, T. R. & Fish, D. Forest fragmentation predicts local scale heterogeneity of Lyme disease risk. Oecologia 146, 469–475 (2005).

  • 7.

    Oda, E., Solari, A. & Botto-Mahan, C. Effect of mammal host diversity and density on the infection level of Trypanosoma cruzi in sylvatic kissing bugs. Med. Vet. Entomol. 28, 384–390 (2014).

  • 8.

    Johnson, P. T., Preston, D. L., Hoverman, J. T. & Richgels, K. L. Biodiversity decreases disease through predictable changes in host community competence. Nature 494, 230–233 (2013).

  • 9.

    Poulin, R. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132, 143–151 (2006).

  • 10.

    Pliscoff, P., Luebert, F., Hilger, H. H. & Guisan, A. Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment. Ecol. Modell. 288, 166–177 (2014).

    • Article
    • Google Scholar
  • 11.

    Botto-Mahan, C., Ortiz, S., Rozas, M., Cattan, P. E. & Solari, A. DNA evidence of Trypanosoma cruzi in the Chilean wild vector Mepraia spinolai (Hemiptera: Reduviidae). Mem. Inst. Oswaldo Cruz 100, 237–239 (2005a).

    • Article
    • Google Scholar
  • 12.

    Ihle-Soto, C. et al. Spatio-temporal characterization of Trypanosoma cruzi infection and discrete typing units infecting hosts and vectors from non-domestic foci of Central Chile. PLoS Negl. Trop. Dis. 13, e7170 (2019).

    • Article
    • Google Scholar
  • 13.

    Cattan, P. E., Pinochet, A., Botto-Mahan, C., Acuña, M. & Canals, M. Abundance of Mepraia spinolai in a periurban zone of Chile. Mem. Inst. Oswaldo Cruz 97, 285–287 (2002).

    • Article
    • Google Scholar
  • 14.

    Botto-Mahan, C., Cattan, P. E., Canals, M. & Acuña, M. Seasonal variation in the home range and host availability of the blood-sucking insect Mepraia spinolai in wild environment. Acta Trop. 95, 160–163 (2005b).

    • Article
    • Google Scholar
  • 15.

    Bacigalupo, A. et al. Primer hallazgo de vectores de la enfermedad de Chagas asociados a matorrales silvestres en la Región Metropolitana, Chile. Rev. Med. Chil. 134, 1230–1236 (2006).

    • Article
    • Google Scholar
  • 16.

    Correa, J. P. et al. Spatial distribution of an infectious disease in a small mammal community. Sci. Nat. 102, 51 (2015).

    • Article
    • Google Scholar
  • 17.

    Sagua, H., Araya, J., González, J. & Neira, I. Mepraia spinolai in the Southeastern Pacific Ocean Coast (Chile)-First insular record and feeding pattern on the Pan de Azucar Island. Mem. Inst. Oswaldo Cruz 95, 167–170 (2000).

    • Article
    • Google Scholar
  • 18.

    Canals, M., Cruzat, L., Molina, M. C., Ferreira, A. & Cattan, P. E. Blood host sources of Mepraia spinolai (Heteroptera: Reduviidae), wild vector of Chagas disease in Chile. J. Med. Entomol. 38, 303–307 (2001).

  • 19.

    Botto-Mahan, C. et al. Temporal variation of Trypanosoma cruzi infection in native mammals in Chile. Vector Borne Zoonotic. Dis. 10, 317–319 (2010).

    • Article
    • Google Scholar
  • 20.

    Botto-Mahan, C., Acuña-Retamar, M., Campos, R., Cattan, P. E. & Solari, A. European rabbits (Oryctolagus cuniculus) are naturally infected with different Trypanosoma cruzi genotypes. Am. J. Trop. Med. Hyg. 80, 944–946 (2009).

  • 21.

    Ehrenfeld, M. J., Canals, M. & Cattan, P. E. Population parameters of Triatoma spinolai (Heteroptera: Reduviidae) under different environmental conditions and densities. J. Med. Entomol. 35, 740–744 (1998).

  • 22.

    Hay, S. I., Guerra, C. A., Tatem, A. J., Noor, A. M. & Snow, R. W. The global distribution and population at risk of malaria: past, present, and future. Lancet Infect. Dis. 4, 327–336 (2004).

    • Article
    • Google Scholar
  • 23.

    Fresquet, N. & Lazzari, C. R. Response to heat in Rhodnius prolixus: the role of the thermal background. J. Insect Physiol. 57, 1446–1449 (2011).

  • 24.

    Lehane, M.J. The Biology of Blood-Sucking in Insects (Cambridge University Press, 2005).

  • 25.

    Lafferty, K. D. Calling for an ecological approach to studying climate change and infectious diseases. Ecology 90, 932–933 (2009).

    • Article
    • Google Scholar
  • 26.

    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project, https://qgis.org (2018).

  • 27.

    Wincker, P. et al. Use of a simplified polymerase chain reaction procedure to detect Trypanosoma cruzi in blood samples from chronic chagasic patients in a rural endemic area. Am. J. Trop. Med. Hyg. 51, 771–777 (1994).

  • 28.

    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).

    • Article
    • Google Scholar
  • 29.

    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. URL, https://www.R-project.org/ (2018).

  • 30.

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Spring Science and Business Media, 2009).

  • 31.

    Acuña-Retamar, M., Botto-Mahan, C., Canals, M., Correa, J. P. & Cattan, P. E. Comparative population dynamics of the bug Mepraia spinolai, a sylvatic vector of Chagas’ disease, in different hosts. Med. Vet. Entomol. 23, 106–110 (2009).

    • Article
    • Google Scholar
  • 32.

    Hill, W. A. & Brown, J. P. Zoonoses of rabbits and rodents. Vet. Clin. North Am. Exot. Anim. Pract. 14, 519–531 (2011).

    • Article
    • Google Scholar
  • 33.

    Abad-Franch, F., Palomeque, F. S., Aguilar, H. & Miles, M. A. Field ecology of sylvatic Rhodnius populations (Heteroptera, Triatominae): risk factors for palm tree infestation in western Ecuador. Trop. Med. Int. Health 10, 1258–1266 (2005).

  • 34.

    Lindström, A. & Jaenson, T. G. Distribution of the common tick, Ixodes ricinus (Acari: Ixodidae), in different vegetation types in southern Sweden. J. Med. Entomol. 40, 375–378 (2003).

    • Article
    • Google Scholar
  • 35.

    Chacón, F. et al. Feeding profile of Mepraia spinolai, a sylvatic vector of Chagas disease in Chile. Acta Trop. 162, 171–173 (2016).

    • Article
    • Google Scholar
  • 36.

    Bardosh, K. L., Ryan, S., Ebi, K., Welburn, S. & Singer, B. Addressing vulnerability, building resilience: community-based adaptation to vector-borne diseases in the context of global change. Infect. Dis. Poverty 6, 166 (2017).

    • Article
    • Google Scholar
  • 37.

    Gozlan, R. E. & Marine, C. Environmental change and pathogen transmission in Ecology and Evolution of Infectious Diseases: Pathogen Control and Public Health Management in Low-Income Countries (eds. Roche, B., Broutin, H. & Simard, F.) 59–76 (Oxford University Press, Oxford, 2018).

  • 38.

    Dobson, A. D. & Auld, S. K. Epidemiological implications of host biodiversity and vector biology: key insights from simple models. Am. Nat. 187, 405–422 (2016).

    • Article
    • Google Scholar
  • 39.

    Vidal, M.A. & Labra, A. Dieta de anfibios y reptiles in Herpetología de Chile (eds. Vidal, M. A. & Labra, A.) 453–482 (Science Verlag Ediciones, 2008).

  • 40.

    Ramírez, P. A., González, A. & Botto-Mahan, C. Masking behavior by Mepraia spinolai (Hemiptera: Reduviidae): Anti-predator defense and life history trade-offs. J. Insect. Behav. 26, 592–602 (2013).

    • Article
    • Google Scholar
  • 41.

    Ryckman, R. Lizards: a laboratory host for Triatominae and Trypanosoma cruzi Chagas (Hemiptera: Reduviidae) (Protomonadida: Trypanosomidae). Trans. Am. Microsc. Soc. 73, 215–218 (1954).

    • Article
    • Google Scholar
  • 42.

    Asin, S. & Catala, S. Development of Trypanosoma cruzi in Triatoma infestans: influence of temperature and blood consumption. J. Parasitol. 81, 1–7 (1995).

  • 43.

    Ferreira, R. C., Teixeira, C. F., de Sousa, V. F. A. & Guarneri, A. A. Effect of temperature and vector nutrition on the development and multiplication of Trypanosoma rangeli in Rhodnius prolixus. Parasitol. Res. 117, 1737–1744 (2018).

    • Article
    • Google Scholar
  • 44.

    Schaub, G. A. Direct transmission of Trypanosoma cruzi between vectors of Chagas’ disease. Acta Trop. 45, 11–19 (1988).

  • 45.

    Falvo, M. L., Lorenzo Figueiras, A. N. & Manrique, G. Spatio-temporal analysis of the role of faecal depositions in aggregation behaviour of the triatomine Rhodnius prolixus. Physiol. Entomol. 41, 24–30 (2016).

    • Article
    • Google Scholar
  • 46.

    Roche, B., Broutin, H. & Simard, F. Ecology and Evolution of Infectious Diseases: Pathogen Control and Public Health Management in Low-Income Countries (Oxford University Press, 2018).


  • Source: Ecology - nature.com

    The scientists restoring a gold-mining disaster in the Peruvian Amazon

    Decarbonizing the making of consumer products