in

Local community assembly mechanisms shape soil bacterial β diversity patterns along a latitudinal gradient

  • 1.

    Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol Mol. Biol. Rev. 77, 342–356 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 4.

    Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Sul, W. J., Oliver, T. A., Ducklow, H. W., Amaral-Zettler, L. A. & Sogin, M. L. Marine bacteria exhibit a bipolar distribution. Proc. Natl Acad. Sci. USA 110, 2342–2347 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 7.

    Delgado‐Baquerizo, M. et al. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecol. Monogr. 86, 373–390 (2016).

    Article  Google Scholar 

  • 8.

    Martiny, J. B., Eisen, J. A., Penn, K., Allison, S. D. & Horner-Devine, M. C. Drivers of bacterial β-diversity depend on spatial scale. Proc. Natl Acad. Sci. USA 108, 7850–7854 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 9.

    Cavender‐Bares, J., Kozak, K. H., Fine, P. V. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).

    PubMed  Article  Google Scholar 

  • 10.

    Kraft, N. J. et al. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 11.

    Myers, J. A., Chase, J. M., Crandall, R. M. & Jiménez, I. Disturbance alters beta‐diversity but not the relative importance of community assembly mechanisms. J. Ecol. 103, 1291–1299 (2015).

    Article  Google Scholar 

  • 12.

    Stegen, J. C. et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 7, 2069–2079 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Wang, X. B. et al. Habitat-specific patterns and drivers of bacterial β-diversity in China’s drylands. ISME J. 11, 1345 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Ferrenberg, S. et al. Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J. 7, 1102–1111 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Myers, J. A. et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol. Lett. 16, 151–157 (2013).

    PubMed  Article  Google Scholar 

  • 16.

    Catano, C. P., Dickson, T. L. & Myers, J. A. Dispersal and neutral sampling mediate contingent effects of disturbance on plant beta-diversity: a meta-analysis. Ecol. Lett. 20, 347–356 (2017).

    PubMed  Article  Google Scholar 

  • 17.

    Dini-Andreote, F., Stegen, J. C., Elsas, J. D. & Salles, J. F. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl Acad. Sci. USA 112, 1326–1332 (2015).

    Article  CAS  Google Scholar 

  • 18.

    Tripathi, B. M. et al. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J. 12, 1072 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Albright, M. B. N. & Martiny, J. B. H. Dispersal alters bacterial diversity and composition in a natural community. ISME J. 12, 296 (2018).

    PubMed  Article  Google Scholar 

  • 20.

    Cadotte, M. W. Dispersal and species diversity: a meta-analysis. Am. Nat. 167, 913–924 (2006).

    PubMed  Article  Google Scholar 

  • 21.

    Questad, E. J. & Foster, B. L. Coexistence through spatio‐temporal heterogeneity and species sorting in grassland plant communities. Ecol. Lett. 11, 717–726 (2008).

    PubMed  Article  Google Scholar 

  • 22.

    Segre, H. et al. Competitive exclusion, beta diversity, and deterministic vs. stochastic drivers of community assembly. Ecol. Lett. 17, 1400–1408 (2014).

    PubMed  Article  Google Scholar 

  • 23.

    Ranjard, L. et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat. Commun. 4, 1434 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 24.

    Qian, W. & Lin, X. Regional trends in recent temperature indices in China. Clim. Res. 27, 119–134 (2004).

    Article  Google Scholar 

  • 25.

    Ma, B. et al. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 10, 1891 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc. Natl Acad. Sci. USA 104, 11436–11440 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 27.

    Morton, J. T. et al. Uncovering the Horseshoe effect in microbial analyses. mSystems 2, e00166–00116 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Zeng, J. et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 92, 41–49 (2016).

    CAS  Article  Google Scholar 

  • 29.

    Chisholm, R. A. & Pacala, S. W. Theory predicts a rapid transition from niche-structured to neutral biodiversity patterns across a speciation-rate gradient. Theor. Ecol. 4, 195–200 (2011).

    Article  Google Scholar 

  • 30.

    Fierer, N. et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 6, 1007–1017 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340 (2010).

    PubMed  Article  Google Scholar 

  • 32.

    Bell, T. Experimental tests of the bacterial distance decay relationship. ISME J. 4, 1357 (2010).

    PubMed  Article  Google Scholar 

  • 33.

    Morlon, H. et al. A general framework for the distance–decay of similarity in ecological communities. Ecol. Lett. 11, 904–917 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Dexter, K. G., Terborgh, J. W. & Cunningham, C. W. Historical effects on beta diversity and community assembly in Amazonian trees. Proc. Natl Acad. Sci. USA 109, 7787–7792 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 35.

    Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. B Biol. Sci. 366, 2351–2363 (2011).

    Article  Google Scholar 

  • 36.

    Mori, A. S., Fujii, S., Kitagawa, R. & Koide, D. Null model approaches to evaluating the relative role of different assembly processes in shaping ecological communities. Oecologia 178, 261–273 (2015).

    ADS  PubMed  Article  Google Scholar 

  • 37.

    Zhou, J. et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl Acad. Sci. USA 111, E836–E845 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Dai, W. et al. Spatial variability of soil nutrients in forest areas: a case study from subtropical China. J. Plant Nutr. Soil Sci. 181, 827–835 (2018).

    CAS  Article  Google Scholar 

  • 39.

    Gravel, D., Canham, C. D., Beaudet, M. & Messier, C. Reconciling niche and neutrality: the continuum hypothesis. Ecol. Lett. 9, 399–409 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Durant, S. M. Competition refuges and coexistence: an example from Serengeti carnivores. J. Anim. Ecol. 67, 370–386 (1998).

    Article  Google Scholar 

  • 41.

    Langenheder, S., Berga, M., Östman, Ö. & Székely, A. J. Temporal variation of β-diversity and assembly mechanisms in a bacterial metacommunity. ISME J. 6, 1107 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Wu, S. H. et al. Patterns of plant invasions in China: taxonomic, biogeographic, climatic approaches and anthropogenic effects. Biol. Invasions 12, 2179–2206 (2010).

    Article  Google Scholar 

  • 43.

    Soon, Y. K. & Abboud, S. A comparison of some methods for soil organic carbon determination. Commun. Soil Sci. Plant Anal. 22, 943–954 (1991).

    CAS  Article  Google Scholar 

  • 44.

    Wright, A. F. & Bailey, J. S. Organic carbon, total carbon, and total nitrogen determinations in soils of variable calcium carbonate contents using a Leco CN-2000 dry combustion analyzer. Commun. Soil Sci. Plant Anal. 32, 3243–3258 (2001).

    CAS  Article  Google Scholar 

  • 45.

    Gianello, C. & Bremner, J. M. Comparison of chemical methods of assessing potentially available organic nitrogen in soil. Commun. Soil Sci. Plant Anal. 17, 215–236 (1986).

    CAS  Article  Google Scholar 

  • 46.

    Tamaki, H. et al. Analysis of 16S rRNA amplicon sequencing options on the Roche/454 next-generation titanium sequencing platform. PloS ONE 6, e25263 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Zhang, X. et al. Changes of soil prokaryotic communities after clear-cutting in a karst forest: evidences for cutting-based disturbance promoting deterministic processes. FEMS Microbiol. Ecol. 92, fiw026 (2016).

    PubMed  Article  CAS  Google Scholar 

  • 49.

    Edgar, R. C. et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Gilbert, J. A. et al. The seasonal structure of microbial communities in the Western English Channel. Environ. Microbiol. 11, 3132–3139 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 52.

    Rideout, J. R. et al. Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences. PeerJ 2, e545 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 73, 5261 (2007).

    CAS  Article  Google Scholar 

  • 55.

    Székely, A. J. & Langenheder, S. The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiol. Ecol. 87, 102–112 (2014).

    PubMed  Article  CAS  Google Scholar 

  • 56.

    Vannette, R. L. & Fukami, T. Dispersal enhances beta diversity in nectar microbes. Ecol. Lett. 20, 901–910 (2017).

    PubMed  Article  Google Scholar 

  • 57.

    Raup, D. M. & Crick, R. E. Measurement of faunal similarity in paleontology. J. Paleontol. 53, 1213–1227 (1979).

  • 58.

    Chase, J. M., Kraft, N. J., Smith, K. G., Vellend, M. & Inouye, B. D. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2, 1–11 (2011).

    Article  Google Scholar 

  • 59.

    Tello, J. S. et al. Elevational gradients in β-diversity reflect variation in the strength of local community assembly mechanisms across spatial scales. PLoS ONE 10, 0121458 (2015).

    Article  CAS  Google Scholar 

  • 60.

    Moran, P. A. Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950).

    MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

  • 61.

    Blanchet, F. G., Legendre, P. & Borcard, D. Forward selection of explanatory variables. Ecology 89, 2623–2632 (2008).

    PubMed  Article  Google Scholar 


  • Source: Ecology - nature.com

    Moist heat stress extremes in India enhanced by irrigation

    These bizarre ancient species are rewriting animal evolution