Weibull, A. C., Östman, Ö & Granqvist, Å. Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodivers. Conserv. 12, 1335–1355 (2003).
Gurr, G. M. et al. Landscape ecology and expanding range of biocontrol agent taxa enhance prospects for diamondback moth management. A review. Agron. Sustain. Dev. 38, 23 (2018).
Schweiger, O. et al. Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. J. Appl. Ecol. 42, 1129–1139 (2005).
Stoate, C. et al. Ecological impacts of arable intensification in Europe. J. Environ. Manag. 63, 337–365 (2001).
Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).
Řezáč, M., Pekár, S. & Stará, J. The negative effect of some selective insecticides on the functional response of a potential biological control agent, the spider Philodromus cespitum. Biocontrol 55, 503–510 (2010).
Kovács-Hostyánszki, A. et al. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol. Lett. 20, 673–689 (2017).
Magrach, A. et al. Plant-pollinator networks in semi-natural grasslands are resistant to the loss of pollinators during blooming of mass-flowering crops. Ecography 41, 62–74 (2018).
Tscharntke, T. et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59 (2012).
Rundlöf, M., Bengtsson, J. & Smith, H. G. Local and landscape effects of organic farming on butterfly species richness and abundance. J. Appl. Ecol. 45, 813–820 (2008).
Gabriel, D. et al. Scale matters: the impact of organic farming on biodiversity at different spatial scales. Ecol. Lett. 13, 858–869 (2010).
Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 16014 (2016).
Tscharntke, T. et al. The landscape context of trophic interactions: insect spillover across the crop-noncrop interface. Ann. Zool. Fenn. 42, 421–432 (2005).
Madeira, F. et al. Spillover of arthropods from cropland to protected calcareous grassland—the neighbouring habitat matters. Agric. Ecosyst. Environ. 235, 127–133 (2016).
Schmidt, M. H., Roschewitz, I., Thies, C. & Tscharntke, T. Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J. Appl. Ecol. 42, 281–287 (2005).
Pfiffner, L. & Luka, H. Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric. Ecosyst. Environ. 78, 215–222 (2000).
Saqib, H. S. A., You, M. & Gurr, G. M. Multivariate ordination identifies vegetation types associated with spider conservation in brassica crops. PeerJ 5, e3795 (2017).
Woodcock, B. A. et al. Impact of habitat type and landscape structure on biomass, species richness and functional diversity of ground beetles. Agric. Ecosyst. Environ. 139, 181–186 (2010).
Perović, D. J., Gurr, G. M., Raman, A. & Nicol, H. I. Effect of landscape composition and arrangement on biological control agents in a simplified agricultural system: a cost-distance approach. Biol. Control 52, 263–270 (2010).
Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. 115, 7863–7870 (2018).
Riechert, S. E. & Lockley, T. Spiders as biological control agents. Annu. Rev. Entomol. 29, 299–320 (1984).
Birkhofer, K. et al. Cursorial spiders retard initial aphid population growth at low densities in winter wheat. Bull. Entomol. Res. 98, 249–255 (2008).
Mansour, F., Rosen, D., Shulov, A. & Plaut, H. N. Evaluation of spiders as biological control agents of Spodoptera littoralis larvae on apple in Israel. Acta Oecol. Oecol. Appl. 1, 225–232 (1980).
Griffin, J. N., Byrnes, J. E. K. & Cardinale, B. J. Effects of predator richness on prey suppression: a meta-analysis. Ecology 94, 2180–2187 (2013).
Horváth, R. et al. In stable, unmanaged grasslands local factors are more important than landscape-level factors in shaping spider assemblages. Agric. Ecosyst. Environ. 208, 106–113 (2015).
Batáry, P., Báldi, A., Samu, F., Szuts, T. & Erdos, S. Are spiders reacting to local or landscape scale effects in Hungarian pastures?. Biol. Conserv. 141, 2062–2070 (2008).
Picchi, M. S., Gionata Bocci, F. F., Petacchi, R. & Entling, M. H. Effects of local and landscape factors on spiders and olive fruit flies. Agric. Ecosyst. Environ. 222, 138–147 (2016).
Djoudi, E. A. et al. Farming system and landscape characteristics differentially affect two dominant taxa of predatory arthropods. Agric. Ecosyst. Environ. 259, 98–110 (2018).
Muneret, L., Thiéry, D., Joubard, B. & Rusch, A. Deployment of organic farming at a landscape scale maintains low pest infestation and high crop productivity levels in vineyards. J. Appl. Ecol. 55, 1516–1525 (2018).
Hendrickx, F. et al. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J. Appl. Ecol. 44, 340–351 (2007).
Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201 (2000).
Hurd, L. E. & Fagan, W. F. Cursorial spiders and succession: age or habitat structure?. Oecologia 92, 215–221 (1992).
Halaj, J., Ross, D. W. & Moldenke, A. R. Importance of habitat structure to the arthropod food-web in Douglas-fir canopies. Oikos 90, 139–152 (2000).
Rypstra, A. A. L., Carter, P. P. E., Balfour, R. R. A. & Marshall, S. S. D. Architectural features of agricultural habitats and their impact on the spider inhabitants. J. Arachnol. 27, 371–377 (1999).
Samu, F. & Szinetár, C. On the nature of agrobiont spiders. J. Arachnol. 30, 389–402 (2002).
Gangurde, S. Aboveground arthropod pest and predator diversity in irrigated rice (Oryza sativa L.) production systems of the Philippines. J. Trop. Agric. 45, 1–8 (2007).
Öberg, S. & Ekbom, B. Recolonisation and distribution of spiders and carabids in cereal fields after spring sowing. Ann. Appl. Biol. 149, 203–211 (2006).
Öberg, S. Influence of landscape structure and farming practice on body condition and fecundity of wolf spiders. Basic Appl. Ecol. 10, 614–621 (2009).
Garratt, M. P. D., Senapathi, D., Coston, D. J., Mortimer, S. R. & Potts, S. G. The benefits of hedgerows for pollinators and natural enemies depends on hedge quality and landscape context. Agric. Ecosyst. Environ. 247, 363–370 (2017).
Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).
Langellotto, G. A. & Denno, R. F. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139, 1–10 (2004).
Marshall, E. J. P. & Moonen, A. C. Field margins in northern Europe: their functions and interactions with agriculture. Agric. Ecosyst. Environ. 89, 5–21 (2002).
Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).
Schmidt, M. H., Thies, C., Nentwig, W. & Tscharntke, T. Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J. Biogeogr. 35, 157–166 (2008).
Drapela, T., Moser, D., Zaller, J. G. & Frank, T. Spider assemblages in winter oilseed rape affected by landscape and site factors. Ecography 31, 254–262 (2008).
Zimmerer, K. S. The compatibility of agricultural intensification in a global hotspot of smallholder agrobiodiversity (Bolivia). Proc. Natl. Acad. Sci. USA 110, 2769–2774 (2013).
Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
Sørensen, L. L., Coddington, J. A. & Scharff, N. Inventorying and estimating subcanopy spider diversity using semiquantitative sampling methods in an Afromontane forest. Environ. Entomol. 31, 319–330 (2002).
Mader, V. et al. Land use at different spatial scales alters the functional role of web-building spiders in arthropod food webs. Agric. Ecosyst. Environ. 219, 152–162 (2016).
Hollander, M. & Wolfe, D. Nonparametric Statistical Methods. Wiley Series in Probability and Statistics 2nd edn. (Wiley, New York, 1999).
Oksanen, J. et al. Package “vegan”: Community Ecology Package (2019).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
Torondel, B. et al. Assessment of the influence of intrinsic environmental and geographical factors on the bacterial ecology of pit latrines. Microb. Biotechnol. 9, 209–223 (2016).
Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).
Belsley, D. A., Kuh, E. & Welsch, R. E. Detecting and assessing collinearity. In Regression Diagnostic: Identifying Influential Data and Sources of Collnearity (eds Belsley, D. A. et al.) 85–191 (Wiley, New York, 2005).
Legendre, P., Oksanen, J. & ter Braak, C. J. F. Testing the significance of canonical axes in redundancy analysis. Methods Ecol. Evol. 2, 269–277 (2011).
Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101 (2012).
Kindt, R. Package “BiodiversityR”: Package for Community Ecology and Suitability Analysis (2019).
Warnes, G. R. et al. Package “gplots”: Various R Programming Tools for Plotting Data (2020).
Ploner, A. Heatplus: Heatmaps with Row and/or Column Covariates and Colored Clusters (2020).
Source: Ecology - nature.com