in

Long-term capture and handling effects on body condition, reproduction and survival in a semi-aquatic mammal

  • 1.

    Jobling, M. Are compensatory growth and catch-up growth two sides of the same coin?. Aquacult. Int. 18, 501–510. https://doi.org/10.1007/s10499-009-9260-8 (2010).

    Article  Google Scholar 

  • 2.

    Rebke, M., Coulson, T., Becker, P. H. & Vaupel, J. W. Reproductive improvement and senescence in a long-lived bird. Proc. Natl. Acad. Sci. 107, 7841–7846. https://doi.org/10.1073/pnas.1002645107 (2010).

    ADS  Article  PubMed  Google Scholar 

  • 3.

    Farias, V., Fuller, T. K., Wayne, R. K. & Sauvajot, R. M. Survival and cause-specific mortality of gray foxes (Urocyon cinereoargenteus) in southern California. J. Zool. 266, 249–254. https://doi.org/10.1017/S0952836905006850 (2005).

    Article  Google Scholar 

  • 4.

    Clutton-Brock, T. & Sheldon, B. C. Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25, 562–573. https://doi.org/10.1016/j.tree.2010.08.002 (2010).

    Article  PubMed  Google Scholar 

  • 5.

    Arnemo, J. M. et al. Risk of capture-related mortality in large free-ranging mammals: experiences from Scandinavia. Wildl. Biol. 12, 109–113. https://doi.org/10.1017/S0952836901000309 (2006).

    Article  Google Scholar 

  • 6.

    Harcourt, R. G., Turner, E., Hall, A., Waas, J. R. & Hindell, M. Effects of capture stress on free-ranging, reproductively active male Weddell seals. J. Comp. Physiol. A. 196, 147–154. https://doi.org/10.1007/s00359-009-0501-0 (2010).

    Article  Google Scholar 

  • 7.

    Pelletier, F., Hogg, J. T. & Festa-Bianchet, M. Effect of chemical immobilization on social status of bighorn rams. Anim. Behav. 67, 1163–1165. https://doi.org/10.1016/j.anbehav.2003.07.009 (2004).

    Article  Google Scholar 

  • 8.

    Brivio, F., Grignolio, S., Sica, N., Cerise, S. & Bassano, B. Assessing the impact of capture on wild animals: the case study of chemical immobilisation on alpine ibex. PLoS ONE 10, e0130957. https://doi.org/10.1371/journal.pone.0130957 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Cattet, M., Boulanger, J., Stenhouse, G., Powell, R. A. & Reynolds-Hogland, M. J. An evaluation of long-term capture effects in ursids: implications for wildlife welfare and research. J. Mammal. 89, 973–990. https://doi.org/10.1644/08-MAMM-A-095.1 (2008).

    Article  Google Scholar 

  • 10.

    Holt, R. D. et al. Estimating duration of short-term acute effects of capture handling and radiomarking. J. Wildl. Manag. 73, 989–995. https://doi.org/10.2193/2008-073 (2009).

    Article  Google Scholar 

  • 11.

    Jordan, B. Science-based assessment of animal welfare: wild and captive animals. Revue Sci. Tech. Office Int. Des. Epizooties 24, 515. https://doi.org/10.20506/rst.24.2.1588 (2005).

    CAS  Article  Google Scholar 

  • 12.

    Jewell, Z. Effect of monitoring technique on quality of conservation science. Conserv Biol 27, 501–508. https://doi.org/10.1111/cobi.12066 (2013).

    Article  PubMed  Google Scholar 

  • 13.

    Wilson, R. P. & McMahon, C. R. Measuring devices on wild animals: what constitutes acceptable practice?. Front Ecol. Environ. 4, 147–154 (2006).

    Article  Google Scholar 

  • 14.

    Bourbonnais, M. L. et al. Environmental factors and habitat use influence body condition of individuals in a species at risk, the grizzly bear. Conserv. Physiol. 2, 1. https://doi.org/10.1093/conphys/cou043 (2014).

    CAS  Article  Google Scholar 

  • 15.

    Pearson, E., Ortega, Y. K. & Ruggiero, L. F. Trap-induced mass declines in small mammals: mass as a population index. J. Wildl. Manag. 1, 684–691. https://doi.org/10.2307/3802675 (2003).

    Article  Google Scholar 

  • 16.

    Smith, J. B., Windels, S. K., Wolf, T., Klaver, R. W. & Belant, J. L. Do transmitters affect survival and body condition of American beavers Castor canadensis?. Wildl. Biol 22, 117–123. https://doi.org/10.2981/wlb.00160 (2016).

    Article  Google Scholar 

  • 17.

    Alibhai, S. K., Jewell, Z. C. & Towindo, S. S. Effects of immobilization on fertility in female black rhino (Diceros bicornis). J. Zool. 253, 333–345 (2001).

    Article  Google Scholar 

  • 18.

    Carey, M. J. The effects of investigator disturbance on procellariiform seabirds: a review. N. Z. J. Zool. 36, 367–377. https://doi.org/10.1080/03014220909510161 (2009).

    Article  Google Scholar 

  • 19.

    Côté, S. D., Festa-Bianchet, M. & Fournier, F. Life-history effects of chemical immobilization and radiocollars on mountain goats. J. Wildl. Manag. 1, 745–752. https://doi.org/10.2307/3802351 (1998).

    Article  Google Scholar 

  • 20.

    Omsjoe, E. H. et al. Evaluating capture stress and its effects on reproductive success in Svalbard reindeer. Can. J. Zool. 87, 73–85. https://doi.org/10.1139/Z08-139 (2009).

    Article  Google Scholar 

  • 21.

    Sharpe, F., Bolton, M., Sheldon, R. & Ratcliffe, N. Effects of color banding, radio tagging, and repeated handling on the condition and survival of Lapwing chicks and consequences for estimates of breeding productivity. J. Field Ornithol. 80, 101–110. https://doi.org/10.1111/j.1557-9263.2009.00211.x (2009).

    Article  Google Scholar 

  • 22.

    Igual, J. M. et al. Short-term effects of data-loggers on Cory’s shearwater (Calonectris diomedea). Mar. Biol. 146, 619–624 (2005).

    Article  Google Scholar 

  • 23.

    Casas, F. et al. Assessing the short-term effects of capture, handling and tagging of sandgrouse. Ibis 157, 115–124. https://doi.org/10.1111/ibi.12222 (2015).

    Article  Google Scholar 

  • 24.

    Clinchy, M., Krebs, C. J. & Jarman, P. J. Dispersal sinks and handling effects: interpreting the role of immigration in common brushtail possum populations. J. Anim. Ecol. 70, 515–526. https://doi.org/10.1046/j.1365-2656.2001.00510.x (2001).

    Article  Google Scholar 

  • 25.

    Dugger, K. M., Ballard, G., Ainley, D. G. & Barton, K. J. Effects of flipper bands on foraging behavior and survival of Adélie penguins (Pygoscelis adeliae). Auk 123, 858–869. https://doi.org/10.1093/auk/123.3.858 (2006).

    Article  Google Scholar 

  • 26.

    Esler, D., Mulcahy, D. M. & Jarvis, R. L. Testing assumptions for unbiased estimation of survival of radiomarked harlequin ducks. J. Wildl. Manag. 1, 591–598. https://doi.org/10.2307/3803257 (2000).

    Article  Google Scholar 

  • 27.

    Gibson, D. et al. Effects of radio collars on survival and lekking behavior of male greater sage-grouse. The Condor 115, 769–776. https://doi.org/10.1525/cond.2013.120176 (2013).

    Article  Google Scholar 

  • 28.

    Ginsberg, J. R. et al. Handling and survivorship of African wild dog (Lycaon pictus) in five ecosystems. Conserv. Biol. 9, 665–674. https://doi.org/10.1046/j.1523-1739.1995.09030665.x (1995).

    Article  Google Scholar 

  • 29.

    Ponjoan, A. et al. Adverse effects of capture and handling little bustard. J. Wildl. Manag. 72, 315–319. https://doi.org/10.2193/2006-443 (2008).

    Article  Google Scholar 

  • 30.

    Kukalová, M., Gazárková, A. & Adamík, P. Should I stay or should I go? The influence of handling by researchers on den use in an arboreal nocturnal rodent. Ethology 119, 848–859. https://doi.org/10.1111/eth.12126 (2013).

    Article  Google Scholar 

  • 31.

    Wingfield, J. C. & Sapolsky, R. M. Reproduction and resistance to stress: when and how. J. Neuroendocrinol. 15, 711–724. https://doi.org/10.1046/j.1365-2826.2003.01033.x (2003).

    CAS  Article  PubMed  Google Scholar 

  • 32.

    Grissom, N. & Bhatnagar, S. Habituation to repeated stress: get used to it. Neurobiol. Learn. Mem. 92, 215–224. https://doi.org/10.1016/j.nlm.2008.07.001 (2009).

    Article  PubMed  Google Scholar 

  • 33.

    Lindenmayer, D. B. et al. Value of long-term ecological studies. Austral. Ecol. 37, 745–757. https://doi.org/10.1111/j.1442-9993.2011.02351.x (2012).

    Article  Google Scholar 

  • 34.

    Schell, C. J., Young, J. K., Lonsdorf, E. V., Santymire, R. M. & Mateo, J. M. Parental habituation to human disturbance over time reduces fear of humans in coyote offspring. Ecol. Evol. 8, 12965–12980. https://doi.org/10.1002/ece3.4741 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Campbell, R. D., Newman, C., Macdonald, D. W. & Rosell, F. Proximate weather patterns and spring green-up phenology effect Eurasian beaver (Castor fiber) body mass and reproductive success: the implications of climate change and topography. Global Change Biol. 19, 1311–1324. https://doi.org/10.1111/gcb.12114 (2013).

    ADS  Article  Google Scholar 

  • 36.

    Campbell, R. D., Rosell, F., Newman, C. & Macdonald, D. W. Age-related changes in somatic condition and reproduction in the Eurasian beaver: resource history influences onset of reproductive senescence. PLoS ONE 12, e0187484. https://doi.org/10.1371/journal.pone.0187484 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Parker, H., Zedrosser, A. & Rosell, F. Age-specific reproduction in relation to body size and condition in female Eurasian beavers. J. Zool. 302, 236–243. https://doi.org/10.1111/jzo.12458 (2017).

    Article  Google Scholar 

  • 38.

    Sun, L. X. & Muller-Schwarze, D. Anal gland secretion codes for relatedness in the beaver Castor canadensis. Ethology 104, 917–927. https://doi.org/10.1111/j.1439-0310.1998.tb00041.x (1998).

    Article  Google Scholar 

  • 39.

    Rosell, F., Bergan, P. & Parker, H. Scent-marking in the Eurasian beaver (Castor fiber) as a means of territory defense. J. Chem. Ecol. 24, 207–219. https://doi.org/10.1023/A:1022524223435 (1998).

    CAS  Article  Google Scholar 

  • 40.

    Mayer, M., Frank, S. C., Zedrosser, A. & Rosell, F. Causes and consequences of inverse density-dependent territorial behaviour and aggression in a monogamous mammal. J. Anim. Ecol. 89, 577–588. https://doi.org/10.1111/1365-2656.13100 (2019).

    Article  PubMed  Google Scholar 

  • 41.

    Hohwieler, K., Rosell, F. & Mayer, M. Scent-marking behavior by subordinate Eurasian beavers. Ethology 124, 591–599. https://doi.org/10.1111/eth.12762 (2018).

    Article  Google Scholar 

  • 42.

    Steyaert, S. M. J. G., Zedrosser, A. & Rosell, F. Socio-ecological features other than sex affect habitat selection in the socially obligate monogamous Eurasian beaver. Oecologia 179, 1023–1032. https://doi.org/10.1007/s00442-015-3388-1 (2015).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Gallant, D., Bérubé, C. H., Tremblay, E. & Vasseur, L. An extensive study of the foraging ecology of beavers (Castor canadensis) in relation to habitat quality. Can. J. Zool. 82, 922–933. https://doi.org/10.1139/z04-067 (2004).

    Article  Google Scholar 

  • 44.

    Haarberg, O. & Rosell, F. Selective foraging on woody plant species by the Eurasian beaver (Castor fiber) in Telemark Norway. J. Zool. 270, 201–208. https://doi.org/10.1111/j.1469-7998.2006.00142.x (2006).

    Article  Google Scholar 

  • 45.

    Pinto, B., Santos, M. J. & Rosell, F. Habitat selection of the Eurasian beaver (Castor fiber) near its carrying capacity: an example from Norway. Can. J. Zool. 87, 317–325. https://doi.org/10.1139/Z09-015 (2009).

    Article  Google Scholar 

  • 46.

    Sharpe, F. & Rosell, F. Time budgets and sex differences in the Eurasian beaver. Anim. Behav. 66, 1059–1067. https://doi.org/10.1006/anbe.2003.2274 (2003).

    Article  Google Scholar 

  • 47.

    Graf, P. M., Mayer, M., Zedrosser, A., Hacklander, K. & Rosell, F. Territory size and age explain movement patterns in the Eurasian beaver. Mamm. Biol. 81, 587–594. https://doi.org/10.1016/j.mambio.2016.07.046 (2016).

    Article  Google Scholar 

  • 48.

    Gallant, D. et al. Linking time budgets to habitat quality suggests that beavers (Castor canadensis) are energy maximizers. Can. J. Zool. 94, 671–676. https://doi.org/10.1139/cjz-2016-0016 (2016).

    ADS  Article  Google Scholar 

  • 49.

    Graf, P. M., Hochreiter, J., Hacklander, K., Wilson, R. P. & Rosell, F. Short-term effects of tagging on activity and movement patterns of Eurasian beavers (Castor fiber). Eur. J. Wildl. Res. 62, 725–736. https://doi.org/10.1007/s10344-016-1051-8 (2016).

    Article  Google Scholar 

  • 50.

    Deguchi, T., Suryan, R. M. & Ozaki, K. Muscle damage and behavioral consequences from prolonged handling of albatross chicks for transmitter attachment. J. Wildl. Manag. 78, 1302–1309. https://doi.org/10.1002/jwmg.765 (2014).

    Article  Google Scholar 

  • 51.

    Grisham, B. A. et al. Evaluation of capture techniques on Lesser Prairie-Chicken trap injury and survival. J. Fish Wildl. Manag. 6, 318–326. https://doi.org/10.3996/032015-JFWM-022 (2015).

    Article  Google Scholar 

  • 52.

    Laurenson, M. K. & Caro, T. Monitoring the effects of non-trivial handling in free-living cheetahs. Anim. Behav. 47, 547–557. https://doi.org/10.1006/anbe.1994.1078 (1994).

    Article  Google Scholar 

  • 53.

    Jakob, E. M., Marshall, S. D. & Uetz, G. W. Estimating fitness: a comparison of body condition indices. Oikos 77, 61–67. https://doi.org/10.2307/3545585 (1996).

    Article  Google Scholar 

  • 54.

    Millar, J. S. & Hickling, G. J. Fasting endurance and the evolution of mammalian body size. Funct. Ecol. 4, 5–12. https://doi.org/10.2307/2389646 (1990).

    Article  Google Scholar 

  • 55.

    Guinet, C., Roux, J. P., Bonnet, M. & Mison, V. Effect of body size, body mass, and body condition on reproduction of female South African fur seals (Arctocephalus pusillus) in Namibia. Can. J. Zool. 76, 1418–1424. https://doi.org/10.1139/z98-082 (1998).

    Article  Google Scholar 

  • 56.

    Smith, D. W. & Jenkins, S. H. Seasonal change in body mass and size of tail of northern beavers. J. Mammal. 78, 869–876. https://doi.org/10.2307/1382945 (1997).

    Article  Google Scholar 

  • 57.

    Magurran, A. E. & Garcia, C. M. Sex differences in behaviour as an indirect consequence of mating system. J. Fish Biol. 57, 839–857. https://doi.org/10.1111/j.1095-8649.2000.tb02196.x (2000).

    Article  Google Scholar 

  • 58.

    Drickamer, L. C., Vandenbergh, J. G. & Colby, D. R. Predictors of dominance in the male golden hamster (Mesocricetus auratus). Anim. Behav. 21, 557–563. https://doi.org/10.1016/s0003-3472(73)80016-8 (1973).

    CAS  Article  PubMed  Google Scholar 

  • 59.

    Bernstein, I. S. Dominance: the baby and the bathwater. Behav. Brain Sci. 4, 419–429. https://doi.org/10.1017/S0140525X00009614 (1981).

    Article  Google Scholar 

  • 60.

    Taillon, J. & Côté, S. D. The role of previous social encounters and body mass in determining social rank: an experiment with white-tailed deer. Anim. Behav. 72, 1103–1110. https://doi.org/10.1016/j.anbehav.2006.03.016 (2006).

    Article  Google Scholar 

  • 61.

    Marolf, B., McElligott, A. G. & Müller, A. E. Female social dominance in two Eulemur species with different social organizations. Zoo. Biol. 26, 201–214. https://doi.org/10.1002/zoo.20135 (2007).

    Article  PubMed  Google Scholar 

  • 62.

    Huang, B., Wey, T. W. & Blumstein, D. T. Correlates and consequences of dominance in a social rodent. Ethology 117, 573–585 (2011).

    Article  Google Scholar 

  • 63.

    Righton, D., Miller, M. & Ormond, R. Correlates of territory size in the butterflyfish Chaetodon austriacus (Rüppell). J. Exp. Mar. Biol. Ecol. 226, 183–193. https://doi.org/10.1016/s0022-0981(97)00235-9 (1998).

    Article  Google Scholar 

  • 64.

    Bobek, B. Summer food as the factor limiting roe deer population size. Nature 268, 47. https://doi.org/10.1038/268047a0 (1977).

    ADS  Article  Google Scholar 

  • 65.

    Myers, J. P., Connors, P. G. & Pitelka, F. A. Territory size in wintering sanderlings: the effects of prey abundance and intruder density. Auk 96, 551–561. https://doi.org/10.1093/auk/96.3.551 (1979).

    Article  Google Scholar 

  • 66.

    Gass, C. L., Angehr, G. & Centa, J. Regulation of food supply by feeding territoriality in the rufous hummingbird. Can. J. Zool. 54, 2046–2054. https://doi.org/10.1139/z76-238 (1976).

    Article  Google Scholar 

  • 67.

    Adams, E. S. Approaches to the study of territory size and shape. Annu. Rev. Ecol. Syst. 32, 277–303. https://doi.org/10.1146/annurev.ecolsys.32.081501.114034 (2001).

    Article  Google Scholar 

  • 68.

    Kelly, K. G., Diamond, A. W., Holberton, R. L. & Bowser, A. K. Researcher handling of incubating Atlantic Puffins Fratercula arctica has no effect on reproductive success. Mar. Ornithol. 43, 77–82 (2015).

    Google Scholar 

  • 69.

    Ramsay, M. A. & Stirling, I. Long-term effects of drugging and handling free-ranging polar bears. J. Wildl. Manag. 1, 619–626. https://doi.org/10.2307/3800972 (1986).

    CAS  Article  Google Scholar 

  • 70.

    Serventy, D. L. & Curry, P. J. Observations on colony size, breeding success, recruitment and inter-colony dispersal in a Tasmanian colony of Short-tailed Shearwaters Puffinus tenuirostris over a 30-year peroid. EMU 84, 71–79. https://doi.org/10.1071/MU9840071 (1984).

    Article  Google Scholar 

  • 71.

    Schradin, C. & Hayes, L. D. A synopsis of long-term field studies of mammals: achievements, future directions, and some advice. J. Mammal. 98, 670–677. https://doi.org/10.1093/jmammal/gyx031 (2017).

    Article  Google Scholar 

  • 72.

    Blumstein, D. T. Habituation and sensitization: new thoughts about old ideas. Anim. Behav. 120, 255–262. https://doi.org/10.1016/j.anbehav.2016.05.012 (2016).

    Article  Google Scholar 

  • 73.

    Baudains, T. P. & Lloyd, P. Habituation and habitat changes can moderate the impacts of human disturbance on shorebird breeding performance. Anim. Conserv. 10, 400–407. https://doi.org/10.1111/j.1469-1795.2007.00126.x (2007).

    Article  Google Scholar 

  • 74.

    Vincze, E. et al. Habituation to human disturbance is faster in urban than rural house sparrows. Behav. Ecol. 27, 1304–1313. https://doi.org/10.1093/beheco/arw047 (2016).

    Article  Google Scholar 

  • 75.

    Van Oers, K. & Carere, C. Long-term effects of repeated handling and bleeding in wild caught great tits Parus major. J. Ornithol. 148, 185–190. https://doi.org/10.1007/s10336-007-0200-y (2007).

    Article  Google Scholar 

  • 76.

    Ordiz, A. et al. Habituation, sensitization, or consistent behavioral responses? Brown bear responses after repeated approaches by humans on foot. Biol. Conserv. 232, 228–237. https://doi.org/10.1016/j.biocon.2019.01.016 (2019).

    Article  Google Scholar 

  • 77.

    Seress, G. et al. Effects of capture and video-recording on the behavior and breeding success of Great Tits in urban and forest habitats. J. Field Ornithol. 88, 299–312. https://doi.org/10.1111/jofo.12205 (2017).

    Article  Google Scholar 

  • 78.

    Ellenberg, U., Mattern, T., Houston, D. M., Davis, L. S. & Seddon, P. J. Previous experiences with humans affect responses of Snares Penguins to experimental disturbance. J. Ornithol. 153, 621–631. https://doi.org/10.1007/s10336-011-0780-4 (2012).

    Article  Google Scholar 

  • 79.

    Ditmer, M. A. et al. Bears habituate to the repeated exposure of a novel stimulus, unmanned aircraft systems. Conserv. Physiol. 7, 67. https://doi.org/10.1093/conphys/coy067 (2019).

    Article  Google Scholar 

  • 80.

    Rabdeau, J., Badenhausser, I., Moreau, J., Bretagnolle, V. & Monceau, K. To change or not to change experimenters: caveats for repeated behavioural and physiological measures in Montagu’s harrier. J. Avian Biol. 50, 1. https://doi.org/10.1111/jav.02160 (2019).

    Article  Google Scholar 

  • 81.

    Rode, K. D. et al. Effects of capturing and collaring on polar bears: findings from long-term research on the southern Beaufort Sea population. Wildl. Res. 41, 311–322. https://doi.org/10.1071/WR13225 (2014).

    Article  Google Scholar 

  • 82.

    Larsen, K. W. & Boutin, S. Movements, survival, and settlement of red squirrel (Tamiasciurus hudsonicus) offspring. Ecology 75, 214–223. https://doi.org/10.2307/1939395 (1994).

    Article  Google Scholar 

  • 83.

    Mayer, M., Zedrosser, A. & Rosell, F. Couch potatoes do better: Delayed dispersal and territory size affect the duration of territory occupancy in a monogamous mammal. Ecol. Evol. 7, 4347–4356. https://doi.org/10.1002/ece3.2988 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 84.

    Mayer, M., Zedrosser, A. & Rosell, F. Extra-territorial movements differ between territory holders and subordinates in a large, monogamous rodent. Sci. Rep. 7, 15261. https://doi.org/10.1038/s41598-017-15540-0 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 85.

    Rosell, F., Johansen, G. & Parker, H. Eurasian beavers (Castor fiber) behavioral response to simulated territorial intruders. Can. J. Zool. 78, 931–935. https://doi.org/10.1139/cjz-78-6-931 (2000).

    Article  Google Scholar 

  • 86.

    Rosell, F. & Bjorkoyli, T. A test of the dear enemy phenomenon in the Eurasian beaver. Anim. Behav. 63, 1073–1078. https://doi.org/10.1006/anbe.2002.3010 (2002).

    Article  Google Scholar 

  • 87.

    Tinnesand, H. V., Jojola, S., Zedrosser, A. & Rosell, F. The smell of desperadoes? Beavers distinguish between dominant and subordinate intruders. Behav. Ecol. Sociobiol. 67, 895–904. https://doi.org/10.1007/s00265-013-1512-y (2013).

    Article  Google Scholar 

  • 88.

    Fretwell, S. D. Populations in a seasonal environment. (Princeton University Press, 1972).

  • 89.

    Rosell, F., Parker, H. & Steifetten, O. Use of dawn and dusk sight observations to determine colony size and family composition in Eurasian beaver Castor fiber. Acta Theriol. 51, 107–112. https://doi.org/10.1007/Bf03192662 (2006).

    Article  Google Scholar 

  • 90.

    Shier, D. M. & Swaisgood, R. R. Fitness costs of neighborhood disruption in translocations of a solitary mammal. Conserv. Biol. 26, 116–123. https://doi.org/10.1111/j.1523-1739.2011.01748.x (2012).

    Article  PubMed  Google Scholar 

  • 91.

    Shier, D. M. Effect of family support on the success of translocated black-tailed prairie dogs. Conserv. Biol. 20, 1780–1790. https://doi.org/10.1111/j.1523-1739.2006.00512.x (2006).

    CAS  Article  PubMed  Google Scholar 

  • 92.

    Gaillard, J. M., Allainé, D., Pontier, D., Yoccoz, N. G. & Promislow, D. E. L. Senescence in natural populations of mammals: a reanalysis. Evolution 48, 509–516. https://doi.org/10.1111/j.1558-5646.1994.tb01329.x (1994).

    Article  PubMed  Google Scholar 

  • 93.

    Lindenmayer, D. B. & Likens, G. E. Adaptive monitoring: a new paradigm for long-term research and monitoring. Trends Ecol. Evol. 24, 482–486. https://doi.org/10.1016/j.tree.2009.03.005 (2009).

    Article  PubMed  Google Scholar 

  • 94.

    Campbell, R. D., Rosell, F., Nolet, B. A. & Dijkstra, V. A. A. Territory and group sizes in Eurasian beavers (Castor fiber): echoes of settlement and reproduction?. Behav. Ecol. Sociobiol. 58, 597–607. https://doi.org/10.1007/s00265-005-0942-6 (2005).

    Article  Google Scholar 

  • 95.

    Sun, L., Müller-Schwarze, D. & Schulte, B. A. Dispersal pattern and effective population size of the beaver. Can. J. Zool. 78, 393–398. https://doi.org/10.1139/z99-226 (2000).

    Article  Google Scholar 

  • 96.

    Campbell, R. D., Nouvellet, P., Newman, C., Macdonald, D. W. & Rosell, F. The influence of mean climate trends and climate variance on beaver survival and recruitment dynamics. Global Change Biol. 18, 2730–2742. https://doi.org/10.1111/j.1365-2486.2012.02739.x (2012).

    ADS  Article  Google Scholar 

  • 97.

    Rosell, F. & Hovde, B. Methods of aquatic and terrestrial netting to capture Eurasian beavers. Wildl. Soc. Bull. 29, 269–274 (2001).

    Google Scholar 

  • 98.

    Rosell, F. & Sun, L. Use of anal gland secretion to distinguish the two beaver species Castor canadensis and C. fiber. Wildl. Biol. 5, 119–123. https://doi.org/10.2981/wlb.1999.015 (1999).

    Article  Google Scholar 

  • 99.

    Rosell, F., Zedrosser, A. & Parker, H. Correlates of body measurements and age in Eurasian beaver from Norway. Eur. J. Wildl. Res. 56, 43–48. https://doi.org/10.1007/s10344-009-0289-9 (2010).

    Article  Google Scholar 

  • 100.

    Mayer, M., Künzel, F., Zedrosser, A. & Rosell, F. The 7-year itch: non-adaptive mate change in the Eurasian beaver. Behav. Ecol. Sociobiol. 71, 1. https://doi.org/10.1007/s00265-016-2259-z (2017).

    Article  Google Scholar 

  • 101.

    Buchanan, K. et al. Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 83, 301–309. https://doi.org/10.1016/j.anbehav.2011.10.031 (2012).

    Article  Google Scholar 

  • 102.

    Aleksiuk, M. The function of the tail as a fat storage depot in the beaver (Castor canadensis). J. Mammal. 51, 145–148. https://doi.org/10.2307/1378541 (1970).

    CAS  Article  PubMed  Google Scholar 

  • 103.

    Parker, H., Rosell, F. & Mysterud, A. Harvesting of males delays female breeding in a socially monogamous mammal; the beaver. Biol. Lett. 3, 107–109. https://doi.org/10.1098/rsbl.2006.0563 (2007).

    Article  Google Scholar 

  • 104.

    Fouchet, D., Santin-Janin, H., Sauvage, F., Yoccoz, N. G. & Pontier, D. An R package for analysing survival using continuous-time open capture–recapture models. Methods Ecol. Evol. 7, 518–528. https://doi.org/10.1111/2041-210x.12497 (2016).

    Article  Google Scholar 

  • 105.

    Borchers, D., Distiller, G., Foster, R., Harmsen, B. & Milazzo, L. Continuous-time spatially explicit capture–recapture models, with an application to a jaguar camera-trap survey. Methods Ecol. Evol. 5, 656–665. https://doi.org/10.1111/2041-210X.12196 (2014).

    Article  Google Scholar 

  • 106.

    Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62, 67–118. https://doi.org/10.2307/2937171 (1992).

    Article  Google Scholar 

  • 107.

    Bonnet, X., Naulleau, G. & Shine, R. The dangers of leaving home: dispersal and mortality in snakes. Biol. Conserv. 89, 39–50. https://doi.org/10.1016/S0006-3207(98)00140-2 (1999).

    Article  Google Scholar 

  • 108.

    Lucas, J. R., Waser, P. M. & Creel, S. R. Death and disappearance: estimating mortality risks associated with philopatry and dispersal. Behav. Ecol. 5, 135–141. https://doi.org/10.1093/beheco/5.2.135 (1994).

    Article  Google Scholar 

  • 109.

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer, Berlin, 2009).

  • 110.

    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. (Springer, Berlin, 2002).

  • 111.

    Magnusson, A. et al. Package ‘glmmTMB’. R Package (2017).

  • 112.

    Barton, K. R-package ‘MuMIn’ (2018).

  • 113.

    Arnold, T. W. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manage 74, 1175–1178. https://doi.org/10.1111/j.1937-2817.2010.tb01236.x (2010).

    Article  Google Scholar 

  • 114.

    Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package (2017).

  • 115.

    Team, R. C. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Austria, 2015. (2018).


  • Source: Ecology - nature.com

    Deep learning-assisted comparative analysis of animal trajectories with DeepHL

    Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization