in

Long-term changes in habitat and trophic level of Southern Ocean squid in relation to environmental conditions

  • 1.

    Reid, K. & Croxall, J. P. Environmental response of upper trophic-level predators reveals a system change in an Antarctic marine ecosystem. Proc. R. Soc. B Biol. Sci. 268, 377–384 (2001).

    CAS  Google Scholar 

  • 2.

    Constable, A. J. et al. Climate change and Southern Ocean ecosystems I: How changes in physical habitats directly affect marine biota. Glob. Chang. Biol. 20, 3004–3025 (2014).

    ADS  PubMed  Google Scholar 

  • 3.

    Rintoul, S. R. et al. Choosing the future of Antarctica. Nature 558, 233–241 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    Gutt, J. et al. Cross-disciplinarity in the advance of Antarctic ecosystem research. Mar. Genom. 37, 1–17 (2018).

    CAS  Google Scholar 

  • 5.

    IPCC (2019) Meredith, M. et al. Special report on the ocean and cryosphere in a changing climate: Polar regions. In press.

  • 6.

    Kwok, R. & Comiso, J. C. Spatial patterns of variability in Antarctic surface temperature: Connections to the southern hemisphere annular mode and the southern oscillation. Geophys. Res. Lett. 29, 1–4 (2002).

    Google Scholar 

  • 7.

    Thompson, D. W. J. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • 8.

    IPCC (2013) Stocker, T. F. et al. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK, Cambridge Univ. Press.

  • 9.

    Meredith, M. P., Murphy, E. J., Hawker, E. J., King, J. C. & Wallace, M. I. On the interannual variability of ocean temperatures around South Georgia, Southern Ocean: Forcing by El Niño/Southern Oscillation and the Southern Annular Mode. Deep Res. Part II Top. Stud. Oceanogr. 55, 2007–2022 (2008).

    ADS  Google Scholar 

  • 10.

    Turner, J. The El Niño-Southern oscillation and Antarctica. Int. J. Climatol. 24, 1–31 (2004).

    Google Scholar 

  • 11.

    Pardo, D. et al. Additive effects of climate and fisheries drive ongoing declines in multiple albatross species. Proc. Natl. Acad. Sci. USA. 114, e10829–e10837 (2017).

    CAS  PubMed  Google Scholar 

  • 12.

    Trathan, P. N. & Murphy, E. J. Sea surface temperature anomalies near South Georgia: Relationships with the Pacific el niño regions. J. Geophys. Res. C. Ocean. 108, 1–10 (2002).

    Google Scholar 

  • 13.

    Forcada, J. & Trathan, P. N. Penguin responses to climate change in the Southern Ocean. Glob. Chang. Biol. 15, 1618–1630 (2009).

    ADS  Google Scholar 

  • 14.

    Horswill, C. et al. Unravelling the relative roles of top-down and bottom-up forces driving population change in an oceanic predator. Ecology 97, 1919–1928 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Gillett, N. P. & Thompson, D. W. J. Simulation of recent Southern Hemisphere climate change. Science 302, 273–275 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    Lovenduski, N. S. & Gruber, N. Impact of the Southern annular mode on Southern Ocean circulation and biology. Geophys. Res. Lett. 32, 1–4 (2005).

    Google Scholar 

  • 17.

    Inchausti, P. et al. Inter-annual variability in the breeding performance of seabirds in relation to oceanographic anomalies that affect the Crozet and the Kerguelen sectors of the Southern Ocean. J. Avian Biol. 2, 170–176 (2003).

    Google Scholar 

  • 18.

    Siniff, D. B., Garrott, R. A., Rotella, J. J., Fraser, W. R. & Ainley, D. G. Opinion: Projecting the effects of environmental change on Antarctic seals. Antarct. Sci. 20, 425–435 (2008).

    ADS  Google Scholar 

  • 19.

    Ito, M., Minami, H., Tanaka, Y. & Watanuki, Y. Seasonal and inter-annual oceanographic changes induce diet switching in a piscivorous seabird. Mar. Ecol. Prog. Ser. 393, 273–284 (2009).

    ADS  Google Scholar 

  • 20.

    Xavier, J. C. et al. Seasonal changes in the diet and feeding behaviour of a top predator indicate a flexible response to deteriorating oceanographic conditions. Mar. Biol. 160, 1597–1606 (2013).

    Google Scholar 

  • 21.

    Xavier, J. C. et al. A review on the biodiversity, distribution and trophic role of cephalopods in the Arctic and Antarctic marine ecosystems under a changing ocean. Mar. Biol. 165, 1–26 (2018).

    Google Scholar 

  • 22.

    Hill, S. L., Phillips, T. & Atkinson, A. Potential climate change effects on the habitat of Antarctic krill in the Weddell quadrant of the Southern Ocean. PLoS ONE 8, e72246 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Freer, J. J., Tarling, G. A., Collins, M. A., Partridge, J. C. & Genner, M. J. Predicting future distributions of lanternfish, significant ecological resource within the Southern Ocean. Diver. Distr. 25, 1259–1272 (2019).

    Google Scholar 

  • 24.

    Xavier, J. C., Croxall, J. P., Trathan, P. & Wood, A. G. Feeding strategies and diets of breeding grey-headed and wandering albatrosses at South Georgia. Mar. Biol. 143, 221–232 (2003).

    Google Scholar 

  • 25.

    Forcada, J., Trathan, P. N., Reid, K. & Murphy, E. J. The effects of global climate variability in pup production of Antarctic fur seals. Ecology 86, 2408–2417 (2005).

    Google Scholar 

  • 26.

    Arthur, B. et al. Return Customers : Foraging site fidelity and the effect of environmental variability in wide-ranging Antarctic Fur Seals. PLoS ONE 10, 1–19 (2015).

    Google Scholar 

  • 27.

    Mills, W. F. et al. Long-term trends in albatross diets in relation to prey availability and breeding success. Mar. Biol. 167, 29 (2020).

    Google Scholar 

  • 28.

    Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 29.

    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Chan. 9, 142–147 (2019).

    ADS  Google Scholar 

  • 30.

    Clarke, M. R. Cephalopod biomass—estimates from predation. Memoir. Natl. Museum Victoria. 44, 95–107 (1983).

    Google Scholar 

  • 31.

    Rodhouse, P. G. et al. Environmental effects on cephalopod population dynamics: Implications for management of fisheries. Adv. Mar. Biol. 67, 99–233 (2014).

    PubMed  Google Scholar 

  • 32.

    Xavier, J. C., Raymond, B., Jones, D. C. & Griffiths, H. Biogeography of cephalopods in the Southern Ocean using habitat suitability prediction models. Ecosystems 19, 220–247 (2016).

    CAS  Google Scholar 

  • 33.

    Saunders, R. A., Tarling, G. A., Hill, S. & Murphy, E. J. Myctophid fish (Family Myctophidae) are central consumers in the food web of the Scotia Sea (Southern Ocean). Front. Mar. Sci. 6, 530 (2019).

    Google Scholar 

  • 34.

    Rodhouse, P. G. Role of squid in the Southern Ocean pelagic ecosystem and the possible consequences of climate change. Deep. Res. Part II Top. Stud. Oceanogr. 95, 129–138 (2013).

    ADS  CAS  Google Scholar 

  • 35.

    Doubleday, Z. A. et al. Global proliferation of cephalopods. Curr. Biol. 26, 406–407 (2016).

    Google Scholar 

  • 36.

    Boyle, P. & Rodhouse, P. G. Cephalopods ecology and fisheries (Blackell Science, Oxford, 2005).

    Google Scholar 

  • 37.

    Cherel, Y. & Hobson, K. A. Stable isotopes, beaks and predators: A new tool to study the trophic ecology of cephalopods, including giant and colossal squids. Proc. R. Soc. B. Biol. Sci. 272, 1601–1607 (2005).

    Google Scholar 

  • 38.

    Ruiz-Cooley, R. I., Villa, E. C. & Gould, W. R. Ontogenetic variation of δ13C and δ15N recorded in the gladius of the jumbo squid Dosidicus gigas: geographic differences. Mar. Ecol. Prog. Ser. 399, 187–198 (2010).

    ADS  CAS  Google Scholar 

  • 39.

    Xavier, J. C. Foraging ecology and interactions with fisheries of wandering albatrosses (Diomedea exulans) breeding at South Georgia. Fish. Oceanogr. 13, 324–344 (2004).

    Google Scholar 

  • 40.

    Cherel, Y., Xavier, J. C., Grissac, S., Trouvé, C. & Weimerskirch, H. Feeding ecology, isotopic niche, and ingestion of fishery-related items of the wandering albatross Diomedea exulans at Kerguelen and Crozet Islands. Mar. Ecol. Prog. Ser. 565, 197–215 (2017).

    ADS  CAS  Google Scholar 

  • 41.

    Xavier, J. C., Croxall, J. P. & Cresswell, K. A. Boluses: an effective method for assessing the proportions of cephalopods in the diet of albatrosses. Auk. 122, 403–413 (2005).

    Google Scholar 

  • 42.

    Cherel, Y., Fontaine, C., Jackson, G. D., Jackson, C. H. & Richard, P. Tissue, ontogenic and sex-related differences in δ13C and δ15N values of the oceanic squid Todarodes filippovae (Cephalopoda: Ommastrephidae). Mar. Biol. 156, 699–708 (2009).

    Google Scholar 

  • 43.

    Guerreiro, M. et al. Habitat and trophic ecology of Southern Ocean cephalopods from stable isotope analyses. Mar. Ecol. Prog. Ser. 530, 119–134 (2015).

    ADS  CAS  Google Scholar 

  • 44.

    Arkhipkin, A. I. et al. World squid fisheries. Rev. Fish. Sci. Aquac. 8249, 2 (2015).

    Google Scholar 

  • 45.

    Xavier, J. C. et al. Future challenges in Southern Ocean ecology research. Front. Mar. Sci. 3, 1–9 (2016).

    Google Scholar 

  • 46.

    Froy, H. et al. Age-related variation in foraging behaviour in the wandering albatross at South Georgia: No evidence for senescence. PLoS ONE 10, e0116415 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Pecl, G. T. & Jackson, G. D. The potential impacts of climate change on inshore squid: Biology, ecology and fisheries. Rev. Fish. Biol. Fish. 18, 373–385 (2008).

    Google Scholar 

  • 48.

    Rogers, A. D. et al. Antarctic futures: An assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Ann. Rev. Mar. Sci. 12, 87–120 (2019).

    PubMed  Google Scholar 

  • 49.

    Griffiths, H. J. Antarctic marine biodiversity—what do we know about the distribution of life in the Southern Ocean?. PLoS ONE 5, e11683 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Turner, J. et al. Antarctic climate change and the environment : an update. Polar. Rec. 50, 237–259 (2014).

    Google Scholar 

  • 51.

    Rodhouse, P. G., Griffiths, H. J., & Xavier, J. C. Southern Ocean squid. In: The Biogeographic Atlas of the Southern Ocean. Cambridge, SCAR, 284–289 (2014a).

  • 52.

    Weimerskirch, H., Louzao, M., de Grissac, S. & Delord, K. Changes in wind pattern alter albatross distribution and life-history traits. Science 335, 211–214 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 53.

    Golikov, A. V., Sabirov, R. M., Lubin, P. A. & Jørgensen, L. L. Changes in distribution and range structure of Arctic cephalopods due to climatic changes of the last decades. Biodiversity 14, 28–35 (2013).

    Google Scholar 

  • 54.

    Golikov, A. V., Sabirov, R. M., Lubin, P. A., Jørgensen, L. L. & Beck, I. M. The northernmost record of Sepietta oweniana (Cephalopoda: Sepiolidae) and comments on boreo-subtropical cephalopod species occurrence in the Arctic. Mar. Biodivers. Rec. 7, e58 (2014).

    Google Scholar 

  • 55.

    Guerra, A., Gonzalez, A. F. & Rocha, F. Appearance of the common paper nautilus Argonauta argo related to the increase of the sea surface temperature in the north-eastern Atlantic. J. Mar. Biol. Assoc. UK 82, 855–858 (2002).

    Google Scholar 

  • 56.

    Stowasser, G. et al. Food web dynamics in the Scotia Sea in summer: a stable isotope study. Deep. Sea Res. Part II Top. Stud. Oceanogr. 59–60, 208–221 (2012).

    ADS  Google Scholar 

  • 57.

    Cherel, Y., Bustamante, P. & Richard, P. Amino acid δ13C and δ15N from sclerotized beaks: A new tool to investigate the foraging ecology of cephalopods, including giant and colossal squids. Mar. Ecol. Prog. Ser. 624, 89–102 (2019).

    ADS  CAS  Google Scholar 

  • 58.

    Steffan, S. A. et al. Trophic hierarchies illuminated via amino acid isotopic analysis. PLoS ONE 8, e76152 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Collins, M. A. & Rodhouse, P. G. Southern ocean cephalopods. Adv. Mar. Biol. 50, 191–265 (2006).

    PubMed  Google Scholar 

  • 60.

    Clarke, M. R., Croxall, J. P. & Prince, P. A. Cephalopods remains in regurgitation of the wandering albatross Diomedea exulans L. at South Georgia. Br. Antarct. Surv. Bull. 54, 9–21 (1981).

    Google Scholar 

  • 61.

    Rodhouse, P. G., Clarke, M. R. & Murray, A. W. Cephalopod prey of the wandering albatross Diomedea exulans. Mar. Biol. 10, 1–10 (1987).

    Google Scholar 

  • 62.

    Xavier, J. C., Croxall, J. P., Trathan, P. N. & Rodhouse, P. G. Inter-annual variation in the cephalopod component of the diet of the wandering albatross, Diomedea exulans, breeding at Bird Island, South Georgia. Mar. Biol. 142, 611–622 (2003).

    Google Scholar 

  • 63.

    Kennicutt, M., Chown, S. & Cassano, J. Six priorities for Antarctic science. Nature 512, 23–25 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 64.

    Gutt, J. et al. The Southern Ocean ecosystem under multiple climate change stresses—an integrated circumpolar assessment. Glob. Chang. Biol. 21, 1434–1453 (2015).

    ADS  PubMed  Google Scholar 

  • 65.

    Polito, M. J. et al. Contrasting specialist and generalist patterns facilitate foraging niche partitioning in sympatric populations of Pygoscelis penguins. Mar. Ecol. Prog. Ser. 519, 221–237 (2015).

    ADS  CAS  Google Scholar 

  • 66.

    Xavier, J. C., & Cherel, Y. Cephalopod beak guide for Southern Ocean. (2009).

  • 67.

    Jaeger, A., Lecomte, V. J., Weimerskirch, H., Richard, P. & Cherel, Y. Seabird satellite tracking validates the use of latitudinal isoscapes to depict predators’ foraging areas in the Southern Ocean. Rapid. Commun. Mass. Spectrom. 24, 1457–1466 (2010).

    Google Scholar 

  • 68.

    Cherel, Y. & Hobson, K. A. Geographical variation in carbon stable isotope signatures of marine predators: A tool to investigate their foraging areas in the Southern Ocean. Mar. Ecol. Prog. Ser. 329, 281–287 (2007).

    ADS  CAS  Google Scholar 

  • 69.

    Hobson, K. A., Piatt, J. F. & Pitocchelli, J. Using stable isotopes to determine seabird trophic relationships. J. Anim. Ecol. 63, 786–798 (1994).

    Google Scholar 

  • 70.

    Brault, E. K. et al. Carbon and nitrogen zooplankton isoscapes in West Antarctica reflect oceanographic transitions. Mar. Ecol. Prog. Ser 593, 29–45 (2018).

    ADS  CAS  Google Scholar 

  • 71.

    Seco, J. et al. Distribution, habitat and trophic ecology of Antarctic squid Kondakovia longimana and Moroteuthis knipovitchi: inferences from predators and stable isotopes. Polar Biol. 39, 167–175 (2016).

    Google Scholar 

  • 72.

    Keeling, C. D. The Suess effect: 13Carbon-14Carbon interrelations. Environ. Int. 2, 229–300 (1979).

    CAS  Google Scholar 

  • 73.

    Hilton, G. M. et al. A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin. Glob. Chang. Biol. 12, 611–625 (2006).

    ADS  Google Scholar 

  • 74.

    Jaeger, A. & Cherel, Y. Isotopic investigation of contemporary and historic changes in penguin trophic niches and carrying capacity of the Southern Indian Ocean. PLoS ONE 6, e16484 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 75.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).

    PubMed  Google Scholar 

  • 76.

    R Development Core Team (2018) R: a language and environment for statistical computing Vienna


  • Source: Ecology - nature.com

    Did our early ancestors boil their food in hot springs?

    MIT Integrative Microbiology Initiative will stimulate environmental microbiology research