There were three methods of sampling the populations. For Methods 1 and 2, records were obtained by driving along the road transects, and stopping to score the age groups in herds within some 100 m of the road. There were three road transects, entirely in the administrative boundaries of Serengeti National Park and consistent every year (1962–2018), with records summed over the three for each data entry. Transect 1 was from Seronera (34.823°E, 2.428°S) west to Kirawira (34.208°E, 2.151°S; 120 km), Transect 2 from Seronera to Bologonja (35.173°E, 1.757°S; 115 km), and Transect 3 from Seronera to Olduvai Gorge (35.35°E, 2.993°S; 75 km) (Fig. 1). The first two transects were in similar savanna ecosystems, and comparison of samples from these two showed close similarity.
Ungulate and ostrich sampling transects in the Serengeti ecosystem.
The criteria for age classes in each species are given in Online-only Table 1. The sample was the herd within view (such as a group of impalas (Ae. melampus) or hartebeests (Al. buselaphus), which occur in discrete groups), or a subset of it if the herd was very large. One observer, using 8–10 x magnification binoculars, called out the age category while a recorder entered the records on data sheets. These were later entered digitally.
Two exceptions to this were the immense herds of migrant wildebeest (C. taurinus) and zebra (Eq. quagga). Because they were numerous and extensive, herds had to be sampled in a systematic way. A vehicle drove through the herds, stopping every half kilometer, where a 180 degree scan out to 100 m was conducted to count the sample within view. The transects were from the start to the end of the herd, with some being 30 km long through a single, continuous herd. Method 3 used aerial pictures of the herds to score age groups. Although the sampling protocol was different in the three methods (due to different distributions of each species) the same criteria for identifying age classes was used in all methods. All methods used either systematic or random sampling of the populations.
All species were either migrants, if the species shows seasonal variation in habitat, or residents, if the species remains in the same area of the park year-round. A notable exception to this is the wildebeest (C. taurinus). In fact, there were two populations of wildebeest, a large migrant herd and a small resident herd at the far western end of the ecosystem. These two were sampled separately and scored as either migrant or resident.
Method 1
This method was used in all sampling years for impala (Ae. melampus), Coke’s kongoni (Al. buselaphus), topi (D. lunatus), warthog (P. africanus), Defassa waterbuck (K. defassa), and zebra (Eq. quagga). Sampling years 1984–1994 for African buffalo (Sy. caffer), 1965–2012 for giraffe (G. camelopardalus), and 1964–2016 for wildebeest (C. taurinus).
Populations were sampled once or twice a year at specific times, depending on the availability of different age classes in the areas near transects. Because ungulates had different birth seasons samples were collected at two time periods, once in mid-year and once at year-end. Only one time period per year was used for each species. The early age group, “infants”, was sampled usually near the end of the rainy season (March–June) since many species give birth during the rainy season. For some species, there was a second sampling period (August-December) at the end of the dry season, to measure the survival of juveniles during this period of ecological stress. There are a few cases where more than two samples were obtained in a single year, so as to track the survival of the whole cohort throughout a year.
Method 2
This method was used in all sampling years for eland (T. oryx), elephant (L. africana), Grant’s gazelle (N. granti), ostrich (S. camelus), and waterbuck (K. defassa).
These species were sufficiently scarce that an adequate sample could not be obtained at specific times. For these, records were scored whenever the species was seen in a sampling period, and then records for all sampling periods of a single given year were summed. A special case was Thomson’s gazelle (Eu. thomsonii), which, although numerous, was scored only during one short time period (1992–1994) for the months of August and September.
Method 3
This method was used in sample years 1965–1973 for African buffalo (Sy. caffer), and 1926–1933 for giraffe (G. camelopardalus tippelskirchi), wildebeest (C. taurinus), and zebra (Eq. quagga). The area covered was in all cases within the Serengeti ecosystem. Buffalo and giraffe were only found in the savanna, while wildebeest were sampled when they were on the plains. Flights were made systematically over the area, wildebeest was sampled using photographs at regular intervals, buffalo and giraffe were sampled when they were encountered.
The third method, applied only in the very early years, used aerial photographs to identify age classes and females. The same criteria for identifying age classes was used as those for Methods 1 and 2 (Online-only Table 1), with an emphasis on the shape and size of horns for the wildebeest and African buffalo2, and of the relative sizes of young giraffe. The early samples in 1926–1933, were obtained from photographs taken by Martin Johnson. These photos reside in the Martin and Osa Johnson Safari Museum, Chanute, Kansas. Unfortunately, the 1965–1973 photographs of buffalo herds have now all been lost or destroyed.
Source: Ecology - nature.com