in

Low genetic diversity indicating the threatened status of Rhizophora apiculata (Rhizophoraceae) in Malaysia: declined evolution meets habitat destruction

  • 1.

    Gandhi, S. & Jones, T. G. Identifying mangrove deforestation hotspots in South Asia, Southeast Asia and Asia-Pacific. Remote Sens. 11, 728 (2019).

    ADS  Article  Google Scholar 

  • 2.

    Hamdan, O., Khali-Aziz, H., Shamsudin, I. & Raja-Barizan, R.S. Status of Mangroves in Peninsular Malaysia. 153 (Forest Research Institute Malaysia, 2012).

  • 3.

    Taillardat, P., Friess, D. A. & Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14, 20180251 (2018).

    Article  CAS  Google Scholar 

  • 4.

    Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 113, 344–349 (2016).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Friess, D. A. et al. Mangroves give cause for conservation optimism, for now. Curr. Biol. 30, R153–R154 (2020).

    CAS  Article  Google Scholar 

  • 6.

    Polidoro, B. A. et al. The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5, e10095 (2010).

    ADS  Article  CAS  Google Scholar 

  • 7.

    Matesanz, S., Rubio-Teso, M. L., García-Fernández, A. & Escudero, A. Habitat fragmentation differentially affects genetic variation, phenotypic plasticity and survival in populations of a gypsum endemic. Front. Plant Sci. 8, 843 (2017).

    Article  Google Scholar 

  • 8.

    Furches, M. S., Small, R. L. & Furches, A. Genetic diversity in three endangered pitcher plant species (Sarracenia; Sarraceniaceae) is lower than widespread congeners. Am. J. Bot. 100, 2092–2101 (2013).

    Article  Google Scholar 

  • 9.

    Yan, Y. B., Duke, N. C. & Sun, M. Comparative analysis of the pattern of population genetic diversity in three Indo-West Pacific Rhizophora mangrove species. Front. Plant Sci. 7, 1434 (2016).

    PubMed  Google Scholar 

  • 10.

    Wan-Ismail, W. N., Wan-Ahmad, W. J., Salam, M. R. & Latiff, A. Structural and floristic pattern in a disturbed mangrove tropical swamp forest: a case study from the Langkawi UNESCO Global Geopark Forest, Peninsular Malaysia. Sains Malays. 47, 861–869 (2018).

    Article  Google Scholar 

  • 11.

    Setyawan, A.D., Ulumuddin, Y.I. & Ragavan, P. Mangrove hybrid of Rhizophora and its parentals species in Indo-Malayan region. Nusantara Biosci. 6 (2014).

  • 12.

    Lahjie, A.M., Nouval, B., Lahjie, A.A., Ruslim, Y. & Kristiningrum, R. Economic valuation from direct use of mangrove forest restoration in Balikpapan Bay, East Kalimantan, Indonesia. F1000Res. 8 (2019).

  • 13.

    Omar, H., Misman, M.A. & Musa, S. GIS and remote sensing for mangroves mapping and monitoring. Geographic Information Systems and Science. IntechOpen https://www.intechopen.com/books/geographic-information-systems-and-science/gis-and-remote-sensing-for-mangroves-mapping-and-monitoring (2019).

  • 14.

    Takayama, K., Tamura, M., Tateishi, Y., Webb, E. L. & Kajita, T. Strong genetic structure over the American continents and transoceanic dispersal in the mangrove genus Rhizophora (Rhizophoraceae) revealed by broad-scale nuclear and chloroplast DNA analysis. Am. J. Bot. 100, 1191–1201 (2013).

    CAS  Article  Google Scholar 

  • 15.

    Ng, W. L. et al. Closely related and sympatric but not all the same: genetic variation of Indo-West Pacific Rhizophora mangroves across the Malay Peninsula. Conserv. Genet. 16, 137–150 (2015).

    Article  Google Scholar 

  • 16.

    Yahya, A. F. et al. Genetic variation and population genetic structure of Rhizophora apiculata (Rhizophoraceae) in the greater Sunda Islands, Indonesia using microsatellite markers. J. Plant Res. 127, 287–297 (2014).

    CAS  Article  Google Scholar 

  • 17.

    Chen, Y. et al. Applications of multiple nuclear genes to the molecular phylogeny, population genetics and hybrid identification in the mangrove genus Rhizophora. PLoS ONE. 10 (2015).

  • 18.

    Guo, Z. et al. Genetic discontinuities in a dominant mangrove Rhizophora apiculata (Rhizophoraceae) in the Indo-Malesian region. J. Biogeogr. 43, 1856–1868 (2016).

    Article  Google Scholar 

  • 19.

    Cheng, A. et al. Molecular marker technology for genetic improvement of underutilised crops. In Crop improvement (eds Abdullah, S. et al.) 47–70 (Springer, Cham, 2017).

    Google Scholar 

  • 20.

    Ali, A. et al. Genetic diversity and population structure analysis of Saccharum and Erianthus genera using microsatellite (SSR) markers. Sci. Rep. 9, 1–10 (2019).

    Article  CAS  Google Scholar 

  • 21.

    Shinmura, Y. et al. Isolation and characterization of 14 microsatellite markers for Rhizophora mucronata (Rhizophoraceae) and their potential use in range-wide population studies. Conserv. Genet. Resour. 4, 951–954 (2012).

    Article  Google Scholar 

  • 22.

    Xu, S. et al. The origin, diversification and adaptation of a major mangrove clade (Rhizophoraceae) revealed by whole-genome sequencing. Natl. Sci. Rev. 4, 721–734 (2017).

    CAS  Article  Google Scholar 

  • 23.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS  Article  Google Scholar 

  • 24.

    Nei, M., Tajima, F. & Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19, 153–170 (1983).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Maguire, T.L., Edwards, K.J., Saenger, P. & Henry, R. Characterisation and analysis of microsatellite loci in a mangrove species, Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Theor. Appl. Genet. 101, 279–285 (2000).

  • 26.

    Torre, S. et al. RNA-seq analysis of Quercus pubescens leaves: de novo transcriptome assembly, annotation and functional markers development. PLoS ONE 9, e112487 (2014).

    ADS  Article  CAS  Google Scholar 

  • 27.

    Ye, Y. et al. Characterization, validation, and cross-species transferability of newly developed EST-SSR markers and their application for genetic evaluation in crape myrtle (Lagerstroemia spp). Mol. Breed. 39, 26 (2019).

    Article  CAS  Google Scholar 

  • 28.

    Nei, M. Molecular Evolutionary Genetics (Columbia University Press, London, 1987).

    Google Scholar 

  • 29.

    Wee, A. K. et al. Vicariance and oceanic barriers drive contemporary genetic structure of widespread mangrove species Sonneratia alba, J. Sm in the Indo-West Pacific. Forests 8, 483 (2017).

    Article  Google Scholar 

  • 30.

    Ellstrand, N. C. & Elam, D. R. Population genetic consequences of small population size: implications for plant conservation. Annu. Rev. Ecol. Evol. Syst. 24, 217–242 (1993).

    Article  Google Scholar 

  • 31.

    Feder, J. L., Gejji, R., Yeaman, S. & Nosil, P. Establishment of new mutations under divergence and genome hitchhiking. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 461–474 (2012).

    Article  Google Scholar 

  • 32.

    Annuar, A. S. & Latip, N. A. Mangrove contributions towards environmental conservation and tourism in Balik Pulau. Adv. Conserv. Sci. Technol. 1, 1–7 (2020).

    Google Scholar 

  • 33.

    Wee, A.K. et al. Oceanic currents, not land masses, maintain the genetic structure of the mangrove Rhizophora mucronata Lam. (Rhizophoraceae) in Southeast Asia. J. Biogeogr. 41, 954–964 (2014).

  • 34.

    Ismail, M. H., Zaki, P. H. & Hamed, A. A. Wood density and carbon estimates of mangrove species in Kuala Sepetang, Perak, Malaysia. Malays. For. 78, 115–124 (2015).

    Google Scholar 

  • 35.

    Vitorino, C. A., Nogueira, F., Souza, I. L., Araripe, J. & Venere, P. C. Low genetic diversity and structuring of the Arapaima (Osteoglossiformes, Arapaimidae) population of the Araguaia-Tocantins basin. Front. Genet. 8, 159 (2017).

    Article  Google Scholar 

  • 36.

    Wright, S. The genetical structure of populations. Ann. Eugen. 15, 323–354 (1951).

    MathSciNet  CAS  MATH  Article  Google Scholar 

  • 37.

    Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).

    CAS  PubMed  Google Scholar 

  • 38.

    Goodman, S. J. RST calc: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Mol. Ecol. 6, 881–885 (1997).

    CAS  Article  Google Scholar 

  • 39.

    Moulin, N. L., Wyttenbach, A., Brüunner, H., Goudet, J. & Hausser, J. Study of gene flow through a hybrid zone in the common shrew (Sorex araneus) using microsatellites. Hereditas. 125, 159–168 (1996).

    Article  Google Scholar 

  • 40.

    Ge, X. J. & Sun, M. Population genetic structure of Ceriops tagal (Rhizophoraceae) in Thailand and China. Wetl. Ecol. Manag. 9, 213–219 (2001).

    Article  Google Scholar 

  • 41.

    Dodd, R.S., Afzal-Rafii, Z., Kashani, N. & Budrick, J. Land barriers and open oceans: effects on gene diversity and population structure in Avicennia germinans L. (Avicenniaceae). Mol. Ecol. 11, 1327–1338 (2002).

  • 42.

    Rizal, S. et al. General circulation in the Malacca strait and Andaman Sea: a numerical model study. Am. J. Environ. Sci. 8, 479–488 (2012).

    Article  Google Scholar 

  • 43.

    Nathan, R. et al. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 23, 638–647 (2008).

    Article  Google Scholar 

  • 44.

    Drexler, J.Z. Maximum longevities of Rhizophora apiculata and R. mucronata propagules. Pac. Sci. 55, 17–22 (2001).

  • 45.

    Li, J. et al. Pronounced genetic differentiation and recent secondary contact in the mangrove tree Lumnitzera racemosa revealed by population genomic analyses. Sci. Rep. 6, 29486 (2016).

    ADS  CAS  Article  Google Scholar 

  • 46.

    Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucl. Acids Res. 8, 4321–4326 (1980).

    CAS  Article  Google Scholar 

  • 47.

    Andrews, S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

  • 48.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinform. 30, 2114–2120 (2014).

    CAS  Article  Google Scholar 

  • 49.

    Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644 (2011).

    CAS  Article  Google Scholar 

  • 50.

    Varshney, R. K., Thiel, T., Stein, N., Langridge, P. & Graner, A. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol. Biol. Lett. 7, 537–546 (2002).

    CAS  PubMed  Google Scholar 

  • 51.

    Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers in Bioinformatics methods and protocols. 365–386 (Humana Press, 2000).

  • 52.

    Van-Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 4, 535–538 (2004).

    CAS  Article  Google Scholar 

  • 53.

    Lewis, P.O. & Zaykin, D. Genetic Data Analysis (GDA) version 1.1: a computer program for the analysis of allelic data. UConn https://phylogeny.uconn.edu/software/ (2002).

  • 54.

    Rice, W. R. Analyzing tables of statistical tests. Evol. 43, 223–225 (1989).

    Article  Google Scholar 

  • 55.

    Park, S.D.E. Trypanotolerance in West African cattle and the population genetic effects of selection. Ph. D (University of Dublin, 2001).

  • 56.

    Goudet, J. FSTAT version 2.9.3.2: a program to estimate and test gene diversities and fixation indices. Unil https://www2.unil.ch/popgen/softwares/fstat.htm (2002).

  • 57.

    Nei, M., Tajima, F. & Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19, 153–170 (1983).

  • 58.

    Liu, K. & Muse, S. V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinform. 21, 2128–2129 (2005).

    CAS  Article  Google Scholar 

  • 59.

    Nei, M. F-statistics and analysis of gene diversity in subdivided populations. Ann. Hum. Genet. 41, 225–233 (1977).

    CAS  MATH  Article  Google Scholar 

  • 60.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinform. 28, 2537–2539 (2012).

    CAS  Article  Google Scholar 

  • 61.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  Google Scholar 

  • 62.

    Li, Y. L. & Liu, J. X. StructureSelector: a web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177 (2018).

    Article  Google Scholar 

  • 63.

    Goudet, J. PCAGEN version 1.2: a program to perform a principal component analysis (PCA) on genetic data. Unil https://www2.unil.ch/popgen/softwares/pcagen.htm (1999).

  • 64.

    Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Reanalysis of putative ovarian follicles suggests that Early Cretaceous birds were feeding not breeding

    Increased mosquito abundance and species richness in Connecticut, United States 2001–2019