in

Macroecological dynamics of gut microbiota

  • 1.

    Faust, K., Lahti, L., Gonze, D., de Vos, W. M. & Raes, J. Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr. Opin. Microbiol. 25, 56–66 (2015).

  • 2.

    Gohl, D. M. et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 34, 942–949 (2016).

  • 3.

    Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).

  • 4.

    David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).

  • 5.

    Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

  • 6.

    Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108(Suppl 1), 4554–4561 (2011).

  • 7.

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

  • 8.

    Carmody, R. N. et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17, 72–84 (2015).

  • 9.

    Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter–gatherers of Tanzania. Science 357, 802–806 (2017).

  • 10.

    Brown, J. H. & Maurer, B. A. Macroecology: the division of food and space among species on continents. Science 243, 1145–1150 (1989).

  • 11.

    von Humboldt, A., Bopland, A. & Ross, T. Personal Narrative of Travels to the Equinoctial Regions of America: During the Years 1799–1804 (Benediction Classics, 2012).

  • 12.

    Mcgill, B. The what, how and why of doing macroecology. Global Ecol. Biogeogr. 28, 6–17 (2019).

    • Article
    • Google Scholar
  • 13.

    Li, L. & Ma, Z. S. Testing the neutral theory of biodiversity with human microbiome datasets. Sci. Rep. 6, 31448 (2016).

  • 14.

    Shoemaker, W. R., Locey, K. J. & Lennon, J. T. A macroecological theory of microbial biodiversity. Nat. Ecol. Evol. 1, 107 (2017).

  • 15.

    Keitt, T. H., Amaral, L. A. N., Buldyrev, S. V. & Stanley, H. E. Scaling in the growth of geographically subdivided populations: invariant patterns from a continent-wide biological survey. Phil. Trans. R. Soc. B 357, 627–633 (2002).

  • 16.

    Keitt, T. H. & Stanley, H. E. Dynamics of North American breeding bird populations. Nature 393, 257–260 (1998).

  • 17.

    Niwa, H. S. Random-walk dynamics of exploited fish populations. ICES J. Mar. Sci. 64, 496–502 (2007).

    • Article
    • Google Scholar
  • 18.

    Allen, A. P., Li, B. L. & Charnov, E. L. Population fluctuations, power laws and mixtures of lognormal distributions. Ecol. Lett. 4, 1–3 (2001).

    • Article
    • Google Scholar
  • 19.

    Mitzenmacher, M. A brief history of generative models for power law and lognormal distributions. Internet Math. 1, 226–251 (2003).

    • Article
    • Google Scholar
  • 20.

    Azaele, S., Pigolotti, S., Banavar, J. R. & Maritan, A. Dynamical evolution of ecosystems. Nature 444, 926–928 (2006).

  • 21.

    Amaral, L. A. N., Sergey, V. B., Havlin, S., Salinger, M. A. & Stanley, H. E. Power law scaling for a system of interacting units with complex internal structure. Phys. Rev. Lett. 80, 1385–1388 (1998).

  • 22.

    Sun, J., Cornelius, S. P., Janssen, J., Gray, K. A. & Motter, A. E. Regularity underlies erratic population abundances in marine ecosystems. J. R. Soc. Interface https://doi.org/10.1098/rsif.2015.0235 (2015).

  • 23.

    Stanley, M. H. R. et al. Scaling behaviour in the growth of companies. Nature 379, 804–806 (1996).

  • 24.

    Plerou, V., Amaral, L. A. N., Gopikrishnan, P., Meyer, M. & Stanley, H. E. Similarities between the growth dynamics of university research and of competitive economic activities. Nature 400, 433–437 (1999).

  • 25.

    Hekstra, D. R. & Leibler, S. Contingency and statistical laws in replicate microbial closed ecosystems. Cell 149, 1164–1173 (2012).

  • 26.

    Metzler, R., Jeon, J. H., Cherstvy, A. G. & Barkai, E. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16, 24128–24164 (2014).

  • 27.

    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

  • 28.

    Gibbons, S. M., Kearney, S. M., Smillie, C. S. & Alm, E. J. Two dynamic regimes in the human gut microbiome. PLoS Comput. Biol. 13, e1005364 (2017).

  • 29.

    Bertuzzo, E. et al. Spatial effects on species persistence and implications for biodiversity. Proc. Natl Acad. Sci. USA 108, 4346–4351 (2011).

  • 30.

    Suweis, S. et al. On species persistence-time distributions. J. Theor. Biol. 303, 15–24 (2012).

  • 31.

    Taylor, L. R. Aggregation, variance and mean. Nature 189, 732–735 (1961).

    • Article
    • Google Scholar
  • 32.

    Taylor, L. R. & Woiwod, I. P. Temporal stability as a density-dependent species characteristic. J. Anim. Ecol. 49, 209–224 (1980).

    • Article
    • Google Scholar
  • 33.

    Taylor, L. R., Woiwod, I. P. & Perry, J. N. Density-dependence of spatial behavior and rarity of randomness. J. Anim. Ecol. 47, 383–406 (1978).

    • Article
    • Google Scholar
  • 34.

    Eisler, Z., Bartos, I. & Kertesz, J. Fluctuation scaling in complex systems: Taylor’s law and beyond. Adv. Phys. 57, 89–142 (2008).

  • 35.

    Kilpatrick, A. M. & Ives, A. R. Species interactions can explain Taylor’s power law for ecological time series. Nature 422, 65–68 (2003).

  • 36.

    Anderson, R. M., Gordon, D. M., Crawley, M. J. & Hassell, M. P. Variability in the abundance of animal and plant-species. Nature 296, 245–248 (1982).

    • Article
    • Google Scholar
  • 37.

    Ma, Z. S. Power law analysis of the human microbiome. Mol. Ecol. 24, 5428–5445 (2015).

  • 38.

    Kendal, W. Taylor’s ecological power law as a consequence of scale invariant exponential dispersion models. Ecol. Complex. 1, 193–209 (2004).

    • Article
    • Google Scholar
  • 39.

    Taylor, L. R. & Taylor, R. A. Aggregation, migration and population mechanics. Nature 265, 415–421 (1977).

  • 40.

    Giometto, A., Formentin, M., Rinaldo, A., Cohen, J. E. & Maritan, A. Sample and population exponents of generalized Taylor’s law. Proc. Natl Acad. Sci. USA 112, 7755–7760 (2015).

  • 41.

    Zhao, L., Sheppard, L. W., Reid, P. C., Walter, J. A. & Reuman, D. C. Proximate determinants of Taylor’s law slopes. J. Anim. Ecol. 88, 484–494 (2019).

  • 42.

    Brose, U. & Hillebrand, H. Biodiversity and ecosystem functioning in dynamic landscapes. Phil. Trans. R. Soc. Lond. B 277, 2339–2345 (2016).

  • 43.

    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

  • 44.

    Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

  • 45.

    Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10–/– mice. Nature 487, 104–108 (2012).

  • 46.

    Kim, K. S. et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 351, 858–863 (2016).

  • 47.

    Dey, N. et al. Regulators of gut motility revealed by a gnotobiotic model of diet–microbiome interactions related to travel. Cell 163, 95–107 (2015).

  • 48.

    Huisman, J. & Weissing, F. J. Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999).

    • Article
    • Google Scholar
  • 49.

    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

  • 50.

    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

  • 51.

    Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

  • 52.

    Sonnenburg, E. D. & Sonnenburg, J. L. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 20, 779–786 (2014).

  • 53.

    Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).

  • 54.

    Banerjee, B. Variance to mean ratio and the spatial distribution of animals. Experientia 32, 993–994 (1976).

    • Article
    • Google Scholar
  • 55.

    Davis, P. M. & Pedigo, L. P. Analysis of spatial patterns and sequential count plans for stalk borer (Lepidoptera: Noctuidae). Environ. Entomol. 18, 504–509 (1989).

    • Article
    • Google Scholar
  • 56.

    Downing, J. A. Spatial heterogeneity: evolved behaviour or mathematical artefact? Nature 323, 255–257 (1986).

    • Article
    • Google Scholar
  • 57.

    Sonnenburg, E. D. et al. Specificity of polysaccharide use in intestinal Bacteroides species determines diet-induced microbiota alterations. Cell 141, 1241–1252 (2010).

  • 58.

    Martens, E. C., Koropatkin, N. M., Smith, T. J. & Gordon, J. I. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284, 24673–24677 (2009).

  • 59.

    Gurry, T. et al. Predictability and persistence of prebiotic dietary supplementation in a healthy human cohort. Sci. Rep. 8, 12699 (2018).

  • 60.

    Marquet, P. A. et al. Scaling and power-laws in ecological systems. J. Exp. Biol. 208, 1749–1769 (2005).

  • 61.

    Real, L.A. & Brown, J. H. (eds.) Foundations of Ecology (Univ. Chicago Press, 1991).

  • 62.

    Hubbell, S. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).

  • 63.

    Azaele, S. et al. Statistical mechanics of ecological systems: neutral theory and beyond. Rev. Mod. Phys. 88, 035003 (2016).

    • Article
    • Google Scholar
  • 64.

    Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A. & Alm, E. J. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 8, 1784 (2017).

  • 65.

    Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8, 343ra381 (2016).

  • 66.

    Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550, 61–66 (2017).

  • 67.

    Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).

  • 68.

    Zeevi, D. et al. Personalized nutrition by prediction of glycemic tesponses. Cell 163, 1079–1094 (2015).

  • 69.

    Meyer, F. et al. The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform. 9, 386 (2008).

  • 70.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

  • 71.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

  • 72.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).


  • Source: Ecology - nature.com

    Evaluating the global energy system

    Energy economics class inspires students to pursue clean energy careers