in

Mapping the bacterial metabolic niche space

  • 1.

    Hutchinson, G. E. Cold Spring Harbor symposium on quantitative biology. Concluding Remarks 22, 415–427 (1957).

    Google Scholar 

  • 2.

    MacArthur, R. H. In Challenging Biological Problems: Directions Toward Their Solution (ed. Behnke, J. A.) pp. 253–259 (Oxford University Press, 1972).

  • 3.

    Chase, J. M. & Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).

  • 4.

    Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl Acad. Sci. USA 106, 19659–19665 (2009).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Winemiller, K. O., Fitzgerald, D. B., Bower, L. M. & Pianka, E. R. Functional traits, convergent evolution, and periodic tables of niches. Ecol. Lett. 18, 737–751 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Pianka, E. R., Vitt, L. J., Pelegrin, N., Fitzgerald, D. B. & Winemiller, K. O. Toward a periodic table of niches, or exploring the lizard niche hypervolume. Am. Naturalist 190, 601–616 (2017).

    Article  Google Scholar 

  • 7.

    Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).

    Article  Google Scholar 

  • 8.

    Hoogenboom, M. O. & Connolly, S. R. Defining fundamental niche dimensions of corals: synergistic effects of colony size, light, and flow. Ecology 90, 767–780 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Porter, W. P. & Kearney, M. Size, shape, and the thermal niche of endotherms. Proc. Natl Acad. Sci. USA 106, 19666–19672 (2009).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 11.

    Benjamin, B. Hypervolume concepts in niche-and trait-based ecology. Ecography 41, 1441–1455 (2018).

    Article  Google Scholar 

  • 12.

    González, A. L., Dézerald, O., Marquet, P. A., Romero, G. Q. & Srivastava, D. S. The multidimensional stoichiometric niche. Front. Ecol. Evol. 5, 110 (2017).

    Article  Google Scholar 

  • 13.

    Stevenson, B. G. The Hutchinsonian niche: multivariate statistical analysis of dung beetle niches. Coleopter. Bull. 36, 246–249 (1982).

  • 14.

    Inward, D. J. G., Davies, R. G., Pergande, C., Denham, A. J. & Vogler, A. P. Local and regional ecological morphology of dung beetle assemblages across four biogeographic regions. J. Biogeogr. 38, 1668–1682 (2011).

    Article  Google Scholar 

  • 15.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 16.

    Green, J. L., Bohannan, B. J. M. & Whitaker, R. J. Microbial biogeography: from taxonomy to traits. science 320, 1039–1043 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 17.

    Noah, F., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).

    Article  Google Scholar 

  • 18.

    Claire Horner-Devine, M. & Bohannan, B. J. M. Phylogenetic clustering and overdispersion in bacterial communities. Ecology 87, S100–S108 (2006).

    PubMed  Article  Google Scholar 

  • 19.

    Lennon, J. T., Aanderud, Z. T., Lehmkuhl, B. K. & Schoolmaster Jr, D. R. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93, 1867–1879 (2012).

    PubMed  Article  Google Scholar 

  • 20.

    Fisher, C. K., Thierry, M. & Walczak, A. M. Variable habitat conditions drive species covariation in the human microbiota. PLoS Comput. Biol. 13, e1005435 (2017).

  • 21.

    Prosser, J. I. et al. The role of ecological theory in microbial ecology. Nat. Rev. Microbiol. 5, 384–392 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Elhanan, B., Martin, K., Feldman, M. W. & Ruppin, E. Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc. Natl Acad. Sci. USA 105, 14482–14487 (2008).

    ADS  Article  Google Scholar 

  • 23.

    Humphries, M. M. & McCann, K. S. Metabolic ecology. J. Anim. Ecol. 83, 7–19 (2014).

    PubMed  Article  Google Scholar 

  • 24.

    Chase, J. M. In The theory of ecology (eds Scheiner, S. M. and Willig, M. R.) pp. 93–107 (2011).

  • 25.

    D’Andrea, R. & Ostling, A. Challenges in linking trait patterns to niche differentiation. Oikos 125, 1369–1385 (2016).

    Article  Google Scholar 

  • 26.

    Barter, E. & Gross, T. Manifold cities: Social variables of urban areas in the uk. Proc. R. Soc. A 475, 20180615 (2019).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Coifman, R. R. et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl Acad. Sci. USA 102, 7426–7431 (2005).

    ADS  CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

  • 28.

    Coifman, R. R. & Lafon, S. Diffusion maps. Appl. Comput. Harmonic Anal. 21, 5–30 (2006).

    MathSciNet  MATH  Article  Google Scholar 

  • 29.

    Kac, M. Can one hear the shape of a drum? Am. Math. Monthly 73, 1–23 (1966).

    MathSciNet  MATH  Article  Google Scholar 

  • 30.

    Boaz, N., Stephane, L., Ioannis, K. & Coifman, R. R. Diffusion maps, spectral clustering and eigenfunctions of fokker-planck operators. In Advances in Neural Information Processing Systems 955–962 (2006).

  • 31.

    Jones, P. W., Mauro, M. & Schul, R. Manifold parametrizations by eigenfunctions of the laplacian and heat kernels. Proc. Natl Acad. Sci. USA 105, 1803–1808 (2008).

    ADS  MathSciNet  CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

  • 32.

    Daniel, M., Sergej, A., Melanie, T. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).

    Article  CAS  Google Scholar 

  • 33.

    Pruitt, K. D., Tatiana, T. & Maglott, D. R. Ncbi reference sequences (refseq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Mendes-Soares, H., Michael, M., Soares, L. M. & Chia, N. Mminte: an application for predicting metabolic interactions among the microbial species in a community. BMC Bioinforma. 17, 343 (2016).

    Article  Google Scholar 

  • 35.

    Boaz, N., Stephane, L., Ronald, C. & Kevrekidis, I. G. In Principal Manifolds For Data Visualization and Dimension Reduction pp. 238–260 (Springer, 2008).

  • 36.

    Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 37, 1482–1492 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Marion, E. et al. The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc. Natl Acad. Sci. USA 105, 17199–17204 (2008).

    Article  Google Scholar 

  • 38.

    Watzer, B. & Forchhammer, K. Cyanophycin synthesis optimizes nitrogen utilization in the unicellular cyanobacterium synechocystis sp. strain pcc 6803. Appl. Environ. Microbiol. 84, e01298–18 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Sonia, F., Lunn, J. E., Franck, B. & Ferrer, J.-L. The structure of a cyanobacterial sucrose-phosphatase reveals the sugar tongs that release free sucrose in the cell. Plant Cell 17, 2049–2058 (2005).

    Article  CAS  Google Scholar 

  • 40.

    Amy, N., Thilo, G. & Bassler, K. E. Mesoscopic structures and the laplacian spectra of random geometric graphs. J. Complex Netw. 3, 543–551 (2015).

    MathSciNet  Article  Google Scholar 

  • 41.

    Komagata, K., Iino, T., Yamada, Y. The Family Acetobacteraceae. In The Prokaryotes (eds Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., Thompson, F.) pp. 3–78 (Springer, Berlin, Heidelberg, 2014).

  • 42.

    Meadows, J. A. & Wargo, M. J. Carnitine in bacterial physiology and metabolism. Microbiology 161, 1161 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Kämpfer, P., Svenja, M. & Müller, H. E. Characterization of buttiauxella and kluyvera species by analysis of whole cell fatty acid patterns. Syst. Appl. Microbiol. 20, 566–571 (1997).

    Article  Google Scholar 

  • 44.

    Parsons, J. B. & Rock, C. O. Bacterial lipids: metabolism and membrane homeostasis. Prog. Lipid Res. 52, 249–276 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Foster, D. B. et al. Phosphatidylethanolamine recognition promotes enteropathogenic E. coli and enterohemorrhagic E. coli host cell attachment. Microb. Pathogenesis 27, 289–301 (1999).

    Article  CAS  Google Scholar 

  • 46.

    Mayer, C. & Boos, W. Hexose/pentose and hexitol/pentitol metabolism. EcoSal Plus 1 (2005).

  • 47.

    Reimer, L. C. et al. Bac dive in 2019: bacterial phenotypic data for high-throughput biodiversity analysis. Nucleic Acids Res. 47, D631–D636 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Devinder, K., Brennan, P. J. & Crick, D. C. Decaprenyl diphosphate synthesis in mycobacterium tuberculosis. J. Bacteriol. 186, 7564–7570 (2004).

    Article  CAS  Google Scholar 

  • 49.

    Newton, G. L., Nancy, B. & Fahey, R. C. Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol. Mol. Biol. Rev. 72, 471–494 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Yaozhu, W., Xiaofei, Z., Sixue, Z. & Tan, X. Structural and functional insights into corrinoid iron-sulfur protein from human pathogen Clostridium difficile. J. Inorg. Biochem. 170, 26–33 (2017).

    Article  CAS  Google Scholar 

  • 51.

    Charles, D., Plants-Paris, K., Dayna, B. & DuPont, H. L. Clostridium difficile modulates the gut microbiota by inducing the production of indole, an interkingdom signaling and antimicrobial molecule. mSystems 4, e00346–18 (2019).

    Google Scholar 

  • 52.

    Luo, H. & Moran, M. A. How do divergent ecological strategies emerge among marine bacterioplankton lineages? Trends Microbiol. 23, 577–584 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Kanehisa, M. & Goto, S. Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Neshich, I. A. P., Eduardo, K. & Arruda, P. Genome-wide analysis of lysine catabolism in bacteria reveals new connections with osmotic stress resistance. ISME J. 7, 2400–2410 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Chang, H.-H. et al. Complete genome sequence of ?candidatus sulcia muelleri? ml, an obligate nutritional symbiont of maize leafhopper (dalbulus maidis). Genome Announc. 3, e01483–14 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    López-Madrigal, S., Amparo, L., Andres, M. & Gil, R. The link between independent acquisition of intracellular gamma-endosymbionts and concerted evolution in tremblaya princeps. Front. Microbiol. 6, 642 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Dale, C. & Moran, N. A. Molecular interactions between bacterial symbionts and their hosts. Cell 126, 453–465 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 58.

    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16s rrna marker gene sequences. Nat. Biotechnol. 31, 814 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Stilianos, L. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936 (2018).

    Article  Google Scholar 

  • 60.

    Douglas, G. M. et al. Picrust2: an improved and extensible approach for metagenome inference. BioRxiv https://www.biorxiv.org/content/10.1101/672295v2 (2019).

  • 61.

    Cooley, S. M., Timothy, H., Deeds, E. J. & Ray, J. C. J. A novel metric reveals previously unrecognized distortion in dimensionality reduction of scRNA-seq data. BioRxiv https://www.biorxiv.org/content/10.1101/689851v3 (2019).

  • 62.

    Thompson, L. R. et al. A communal catalogue reveals earth’s multiscale microbial diversity. Nature 551, 457 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Franzosa, E. A. et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962–968 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    King, Z. A. et al. Bigg models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 44, D515–D522 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 66.

    Lee, M. D. GtoTree: a user-friendly workflow for phylogenomics. Bioinformatics 1, 3 (2019).

    Google Scholar 

  • 67.

    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 68.

    Eddy, S. R. Accelerated profile hmm searches. PLoS Comput. Biol. 7, e1002195 (2011).

    ADS  MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Edgar, R. C. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimal: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 71.

    Price, M. N., Dehal, P. S. & Arkin, A. P. Fasttree 2–approximately maximum-likelihood trees for large alignments. PloS ONE 5, e9490 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 72.

    Letunic, I. & Bork, P. Interactive tree of life (iTol) v4: recent updates and new developments. Nucleic Acids Res47, 256–259 (2019).

  • 73.

    Aravind, S. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

  • 74.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).

  • 75.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • 76.

    Altschul, S. F., Warren, G., Webb, M., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 77.

    Wright, E. S. Using DECIPHER v2.0 to analyze big biological sequence data in R. R. J. 8, 352–359 (2016).

  • 78.

    Ward Jr, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).

    MathSciNet  Article  Google Scholar 


  • Source: Ecology - nature.com

    Genetic structure in Orkney island mice: isolation promotes morphological diversification

    Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: a case of study with maize in Zimbabwe