Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373 (2017).
Smale, D. A., Wernberg, T. & Vanderklift, M. A. Regional-scale variability in the response of benthic macroinvertebrate assemblages to a marine heatwave. Mar. Ecol. Prog. Ser. 568, 17–30 (2017).
Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Chang. 3, 78 (2013).
Collins, M. et al. Extremes, Abrupt Changes and Managing Risks. (2019).
Pershing, A. J., Mills, K. E., Dayton, A. M., Franklin, B. S. & Kennedy, B. T. Evidence for adaptation from the 2016 marine heatwave in the Northwest Atlantic Ocean. Oceanography 31, 152–161 (2018).
Caputi, N. et al. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecol. Evol. 6, 3583–3593 (2016).
Li, L. et al. Subregional differences in groundfish distributional responses to anomalous ocean bottom temperatures in the northeast Pacific. Glob. Chang. Biol. 25, 2560–2575 (2019).
Yang, Q. et al. How “The Blob” affected groundfish distributions in the Gulf of Alaska. Fish. Oceanogr. 28, 434–453 (2019).
Reed, D. et al. Extreme warming challenges sentinel status of kelp forests as indicators of climate change. Nat. Commun. 7, 13757 (2016).
Bindoff, N. L. et al. Changing Ocean, Marine Ecosystems, and Dependent Communities. (2019).
Jones, T. et al. Massive mortality of a planktivorous seabird in response to a marine heatwave. Geophys. Res. Lett. 45, 3193–3202 (2018).
Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).
Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).
Darmaraki, S. et al. Future evolution of Marine Heatwaves in the Mediterranean Sea. Clim. Dyn. 53, 1371–1392 (2019).
Bond, N. A., Cronin, M. F. & Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).
Laufkötter, C., Frölicher, T. L. & Zscheischler, J. High-impact marine heatwaves attributable to human-induced global warming (under review). Science (80-).
Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major Shifts in Pelagic Micronekton and Macrozooplankton Community Structure in an Upwelling Ecosystem Related to an Unprecedented Marine Heatwave. Front. Mar. Sci. 6, 212 (2019).
Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: Winners, Losers, and the Future. Oceanography 29, 273–285 (2016).
Leising, A. W. et al. State of the California Current 2014–15: Impacts of the Warm-Water “Blob”. Calif. Coop. Ocean. Fish. Investig. Reports 56 (2015).
Whitney, F. A. Anomalous winter winds decrease 2014 transition zone productivity in the NE Pacific. Geophys. Res. Lett. 42, 428–431 (2015).
Yang, B., Emerson, S. R. & Peña, M. A. The effect of the 2013–2016 high temperature anomaly in the subarctic Northeast Pacific (the “Blob”) on net community production. Biogeosciences 15, 6747–6759 (2018).
Santora, J. A. et al. Impacts of ocean climate variability on biodiversity of pelagic forage species in an upwelling ecosystem. Mar. Ecol. Prog. Ser. 580, 205–220 (2017).
NOAA. New Marine Heatwave Emerges off West Coast, Resembles ‘the Blob’. Available at: https://www.fisheries.noaa.gov/feature-story/new-marine-heatwave-emerges-west-coast-resembles-blob (2019).
Earl, E. Stock decline leads to historic shutdown for Gulf P-cod. Alaska Journal of Commerce (2019).
O’Connor, M. I. et al. Strengthening confidence in climate change impact science. Glob. Ecol. Biogeogr. 24, 64–76 (2015).
Cheung, W. W. L., Brodeur, R. D., Okey, T. A. & Pauly, D. Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas. Prog. Oceanogr. 130, 19–31 (2015).
Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science (80-). 349, aac4722 (2015).
Portner, H. O. et al. Ocean systems. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (eds. Field, C. B. et al.) 1–138 (2014).
Weatherdon, L. V., Ota, Y., Jones, M. C., Close, D. A. & Cheung, W. W. L. Projected scenarios for coastal First Nations’ fisheries catch potential under climate change: management challenges and opportunities. Plos One 11, e0145285 (2016).
Morley, J. W. et al. Projecting shifts in thermal habitat for 686 species on the North American continental shelf. Plos One 13, e0196127 (2018).
Pauly, D. et al. Fisheries in large marine ecosystems: descriptions and diagnoses. UNEP large Mar. Ecosyst. Rep. a Perspect. Chang. Cond. LMEs World’s Reg. Seas. UNEP Reg. Seas Reports Stud. 23–40 (2008).
Dunne, J. P. et al. GFDL’s ESM2 global coupled climate-carbon Earth System Models. Part I: Physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).
Rodgers, K. B., Lin, J. & Frölicher, T. L. Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an earth system model. Biogeosciences 11, 18189–18227 (2015).
Dunne, J. P. et al. GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics. J. Clim. 26, 2247–2267 (2013).
Cheung, W. W. L., Lam, V. W. Y. & Pauly, D. Dynamic bioclimate envelope model to predict climate-induced changes in distribution of marine fishes and invertebrates. in Modelling Present and Climate-shifted Distributions of Marine Fishes and Invertebrates (eds. Cheung, W. W. L., Lam, V. W. Y. & Pauly, D.) 16(3), 5–50 (University of British Columbia, 2008).
Cheung, W. W. L. et al. Structural uncertainty in projecting global fisheries catches under climate change. Ecol. Modell. 325, 57–66 (2016).
Checkley, D. M. Jr. & Barth, J. A. Patterns and processes in the California Current System. Prog. Oceanogr. 83, 49–64 (2009).
Lindegren, M., Checkley, D. M., Rouyer, T., MacCall, A. D. & Stenseth, N. C. Climate, fishing, and fluctuations of sardine and anchovy in the California Current. Proc. Natl. Acad. Sci. 110, 13672–13677 (2013).
Tseng, Y.-H., Ding, R. & Huang, X. The warm Blob in the northeast Pacific—the bridge leading to the 2015/16 El Niño. Environ. Res. Lett. 12, 54019 (2017).
Barange, M. et al. Impacts of climate change on fisheries and aquaculture. (United Nations’ Food and Agriculture Organization, 2018).
Miller, D. D., Ota, Y., Sumaila, U. R., Cisneros-Montemayor, A. M. & Cheung, W. W. L. Adaptation strategies to climate change in marine systems. Glob. Chang. Biol. 24, e1–e14 (2018).
Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science (80-) 350, 809–812 (2015).
Bindoff, N. L. et al. Detection and attribution of climate change: from global to regional. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the INtergovernmental Panel on Climate Change (Cambridge University Press, 2013).
Turi, G. et al. Response of O2 and pH to ENSO in the California Current System in a high-resolution global climate model. Ocean Sci. 14, 69–86 (2018).
Laufkötter, C. et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12, 6955–6984 (2015).
Vancoppenolle, M. et al. Future Arctic Ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms. Global Biogeochem. Cycles 27, 605–619 (2013).
Lancelot, C. et al. Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study. Biogeosciences 6, 2861–2878 (2009).
Le Fouest, V., Babin, M. & Tremblay, J. E. The fate of riverine nutrients on Arctic shelves. Biogeosciences 10, 3661–3677 (2013).
Luoto, M., Pöyry, J., Heikkinen, R. K. & Saarinen, K. Uncertainty of bioclimate envelope models based on the geographical distribution of species. Glob. Ecol. Biogeogr 14, 575–584 (2005).
Araujo, M. B. & Guisan, A. Five (or so) challenges for species distribution modelling. J. Biogeogr. 33, 1677–1688 (2006).
Cheung, W. W. L., Pauly, D. & Sarmiento, J. L. How to make progress in projecting climate change impacts. ICES J. Mar. Sci. J. du Cons 70, 1069–1074 (2013).
Griffies, S. M. et al. Problems and prospects in large-scale ocean circulation models. Proc. Ocean 9, 410–431 (2009).
Riahi, K. et al. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33–57 (2011).
Pauly, D., Zeller, D. & Palomares, M. D. Sea Around Us Concepts, Design and Data (www.seaaroundus.org). (2020).
Source: Ecology - nature.com