in

Marine organic carbon burial increased forest fire frequency during Oceanic Anoxic Event 2

  • 1.

    Freeman, K. H. & Hayes, J. M. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob. Biogeochem. Cycles 6, 185–198 (1992).

    Google Scholar 

  • 2.

    Pancost, R. D. et al. Further evidence for the development of photic-zone euxinic conditions during Mesozoic oceanic anoxic events. J. Geol. Soc. London 161, 353–364 (2004).

    Google Scholar 

  • 3.

    Monteiro, F. M., Pancost, R. D., Ridgwell, A. & Donnadieu, Y. Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian-Turonian oceanic anoxic event (OAE2): model-data comparison. Paleoceanography 27, PA4209 (2012).

    Google Scholar 

  • 4.

    Schlanger, S. O. & Jenkyns, H. C. Cretaceous oceanic anoxic events: causes and consequences. Geol. Mijnbouw 55, 179–184 (1976).

    Google Scholar 

  • 5.

    Jones, M. M. et al. Astronomical pacing of relative sea level during Oceanic Anoxic Event 2: preliminary studies of the expanded SH#1 Core, Utah. Geol. Soc. Am. Bull. 131, 1702–1722 (2019).

    Google Scholar 

  • 6.

    Gale, A. S. & Christenson, W. K. Occurrence of the belemnite Actinocamax plenus in the Cenomanian of SE France and its significance. Bull. Geol. Soc. Den. 43, 68–77 (1996).

    Google Scholar 

  • 7.

    O’Connor, L. K. et al. A re-evaluation of the Plenus Cold Event, and the links between CO2, temperature, and seawater chemistry during OAE 2. Paleoceanogr. Paleoclimatol. 35, e2019PA003631 (2019).

    Google Scholar 

  • 8.

    Kuhnt, W. et al. Unravelling the onset of Cretaceous Oceanic Anoxic Event 2 in an extended sediment archive from the Tarfaya-Laayoune Basin, Morocco. Paleoceanogr. Paleoclimatol. 32, 923–946 (2017).

    Google Scholar 

  • 9.

    Kuroda, J. & Ohkouchi, N. Implications of spatiotemporal distribution of black shales deposited during the Cretaceous oceanic anoxic event-2. Paleontol. Res. 10, 345–358 (2006).

    Google Scholar 

  • 10.

    Owens, J. D., Lyons, T. W. & Lowery, C. M. Quantifying the missing sink for global organic carbon burial during a Cretaceous oceanic anoxic event. Earth Planet. Sci. Lett. 499, 83–94 (2018).

    Google Scholar 

  • 11.

    Berner, R. A. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. Am. J. Sci. 309, 603–606 (2009).

    Google Scholar 

  • 12.

    Baker, S. J., Hesselbo, S. P., Lenton, T. M., Duarte, L. V. & Belcher, C. M. Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia. Nat. Commun. 8, 15018 (2017).

    Google Scholar 

  • 13.

    Kump, L. R. Terrestrial feedback in atmosphere oxygen regulation by fire and phosphorus. Nature 335, 152–154 (1988).

    Google Scholar 

  • 14.

    Watson, A., Lovelock, J. E. & Margulis, L. Methanogenesis, fires and the regulation of atmospheric oxygen. Biosystems 10, 293–298 (1978).

    Google Scholar 

  • 15.

    Bond, W. J. & Scott, A. C. Fire and the spread of flowering plants in the Cretaceous. New Phytol. 188, 1137–1150 (2010).

    Google Scholar 

  • 16.

    Brown, S. A. E., Scott, A. C., Glasspool, I. J. & Collinson, W. E. Cretaceous wildfires and their impact on the Earth system. Cretac. Res. 36, 162–190 (2012).

    Google Scholar 

  • 17.

    Glasspool, I. J. & Scott, A. C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3, 627–630 (2010).

    Google Scholar 

  • 18.

    Baker, S. J. et al. CO2-induced climate forcing on the fire record during the initiation of Cretaceous oceanic anoxic event 2. Geol. Soc. Am. Bull. 132, 321–333 (2019).

    Google Scholar 

  • 19.

    Zhang, M., Dai, S., Du, B., Ji, L. & Hu, S. Mid-Cretaceous hothouse climate and the expansion of early angiosperms. Acta Geol. Sin. Engl. 92, 2004–2025 (2018).

    Google Scholar 

  • 20.

    Blumer, M. Polycyclic aromatic compounds in nature. Sci. Am. 234, 35–45 (1976).

    Google Scholar 

  • 21.

    Lima, A. L. C., Farrington, J. W. & Reddy, C. M. Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environ. Forensics 6, 109–113 (2005).

    Google Scholar 

  • 22.

    Youngblood, W. W. & Blumer, M. Polycyclic aromatic hydrocarbons in the environment: homologous series in soils and recent marine sediments. Geochim. Cosmochim. Acta 39, 1303–1314 (1975).

    Google Scholar 

  • 23.

    Killops, S. D. & Massoud, M. S. Polycyclic aromatic hydrocarbons of pyrolytic origin in ancient sediments: evidence for Jurassic vegetation fires. Org. Geochem. 18, 1–7 (1992).

    Google Scholar 

  • 24.

    Finkelstein, D. B., Pratt, L. M., Curtin, T. M. & Brassell, S. C. Wildfires and seasonal aridity recorded in Late Cretaceous strata from south-eastern Arizona, USA. Sedimentology 52, 587–599 (2005).

    Google Scholar 

  • 25.

    Belcher, C. M., Finch, P., Collinson, M. E., Scott, A. C. & Grassineau, N. V. Geochemical evidence for combustion of hydrocarbons during the K-T impact event. Proc. Natl Acad. Sci. USA 106, 4112–4117 (2009).

    Google Scholar 

  • 26.

    Tsikos, H. et al. Carbon-isotope stratigraphy recorded by the Cenomanian-Turonian Oceanic Anoxic Event: correlation and implications based on three key localities. J. Geol. Soc. London 161, 711–719 (2004).

    Google Scholar 

  • 27.

    Jarvis, I., Lignum, J. S., Grocke, D. R., Jenkyns, H. C. & Pearce, M. A. Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event. Paleoceanography 26, PA3201 (2011).

    Google Scholar 

  • 28.

    Joo, Y. J. & Sageman, B. B. Cenomanian to Campanian carbon isotope chemostratigraphy from the western interior basin, USA. J. Sediment. Res. 84, 529–542 (2014).

    Google Scholar 

  • 29.

    Jenkyns, H. C., Dickson, A. J., Ruhl, M. & van den Boorn, S. H. J. M. Basalt-seawater interaction, the Plenus Cold Event, enhanced weathering and geochemical change: deconstructing Oceanic Anoxic Event 2 (Cenomanian-Turonian, Late Cretaceous). Sedimentology 64, 16–43 (2017).

    Google Scholar 

  • 30.

    Heimhofer, U. et al. Vegetation response to exceptional global warmth during Oceanic Anoxic Event 2. Nat. Commun. 9, 3832 (2018).

    Google Scholar 

  • 31.

    Elder, W. P. Geometry of Upper Cretaceous bentonite beds: implications about volcanic source areas and paleowind patterns, western interior, United States. Geology 16, 835–838 (1988).

    Google Scholar 

  • 32.

    He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194, 751–759 (2012).

    Google Scholar 

  • 33.

    Belcher, C. M. & Hudspith, V. A. Changes to Cretaceous surface fire behavior influenced the spread of the early angiosperms. New Phytol. 213, 1521–1532 (2016).

    Google Scholar 

  • 34.

    Chumakov, N. M. et al. Climate belts of the mid-Cretaceous time. Stratigr. Geol. Correl. 3, 241–260 (1995).

    Google Scholar 

  • 35.

    Hasegawa, H. et al. Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse. Clim. Past 8, 1323–1337 (2012).

    Google Scholar 

  • 36.

    Hay, W. W. Possible solutions to several enigmas of Cretaceous climate. Int. J. Earth Sci. 108, 587–620 (2018).

    Google Scholar 

  • 37.

    Hay, W. W. & Floegel, S. New thoughts about the Cretaceous climate and oceans. Earth Sci. Rev. 115, 262–272 (2012).

    Google Scholar 

  • 38.

    Scopelliti, G. et al. High-resolution geochemical and biotic records of the Tethyan ‘Bonarelli Level’ (OAE2, latest Cenomanian) from the Calabianca-Guidaloca composite section, northwestern Sicily, Italy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 208, 293–317 (2004).

    Google Scholar 

  • 39.

    Charbonnier, G. et al. Obliquity pacing of the hydrological cycle during the Oceanic Anoxic Event 2. Earth Planet. Sci. Lett. 499, 266–277 (2018).

    Google Scholar 

  • 40.

    Van Helmond, N. A. G. M. et al. A perturbed hydrological cycle during Oceanic Anoxic Event 2. Geology 42, 123–126 (2014).

    Google Scholar 

  • 41.

    Carr, A. S. et al. Leaf wax n-alkane distributions in arid zone South African flora: environmental controls, chemotaxonomy and palaeoecological implications. Org. Geochem. 67, 72–84 (2014).

    Google Scholar 

  • 42.

    Denis, E. H., Pedentchouk, N., Schouten, S., Pagani, M. & Freeman, K. H. Fire and ecosystem change in the Arctic across the Paleocene-Eocene Thermal Maximum. Earth Planet. Sci. Lett. 467, 149–156 (2017).

    Google Scholar 

  • 43.

    Mills, B. J. E., Belcher, C. M., Lenton, T. M. & Newton, R. J. A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic. Geology 22, 1023–1026 (2016).

    Google Scholar 

  • 44.

    Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).

    Google Scholar 

  • 45.

    Kump, L. Chemical stability of the atmosphere and ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 75, 123–136 (1989).

    Google Scholar 

  • 46.

    Saltzman, M. R. et al. Pulse of atmospheric oxygen during the late Cambrian. Proc. Natl Acad. Sci. USA 108, 3876–3881 (2011).

    Google Scholar 

  • 47.

    Huang, J. et al. The global oxygen budget and its future projection. Sci. Bull. 63, 1180–1186 (2018).

    Google Scholar 

  • 48.

    Klages, J. P. et al. Temperature rainforests near the South Pole during peak Cretaceous warmth. Nature 580, 81–86 (2020).

    Google Scholar 

  • 49.

    Turgeon, S. C. & Creaser, R. A. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature 454, 323–326 (2008).

    Google Scholar 

  • 50.

    Jones, M. M., Sageman, B. B. & Selby, D. Stratigraphic record of OAE2 from the Western Interior Basin (N. America): new insights from osmium isotopes (OSi) and the expanded Big Water, UT site. In Society for Sedimentary Geology (SEPM) Research Conference on Oceanic Anoxic Events (Oral Presentation) (2016).

  • 51.

    Arinobu, T., Ishiwatari, R., Kaiho, K. & Lamolda, M. A. Spike of pyrosynthetic polycyclic aromatic hydrocarbons associated with an abrupt decrease in δ13C of a terrestrial biomarker at the Cretaceous-Tertiary boundary at Caravaca, Spain. Geology 27, 723–726 (1999).

    Google Scholar 

  • 52.

    Finkelstein, D. B., Pratt, L. M. & Brassell, S. C. Can biomass burning produce a globally significant carbon-isotope excursion in the sedimentary record? Earth Planet. Sci. Lett. 250, 501–510 (2006).

    Google Scholar 

  • 53.

    Barclay, R. S., McElwain, J. C. & Sageman, B. B. Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2. Nat. Geosci. 3, 205–208 (2010).

    Google Scholar 

  • 54.

    van Bentum, E. C., Reichart, G.-J., Forster, A. & Sinninghe Damsté, J. S. Latitudinal differences in the amplitude of the OAE-2 carbon isotopic excursion: pCO2 and paleo productivity. Biogeosciences 9, 717–731 (2012).

    Google Scholar 

  • 55.

    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).

    Google Scholar 

  • 56.

    Shen, W., Sun, Y., Lin, Y., Liu, D. & Chai, P. Evidence for wildfire in the Meishan section and implications for Permian-Triassic events. Geochim. Cosmochim. Acta 75, 1992–2006 (2011).

    Google Scholar 

  • 57.

    Raison, R. J. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant Soil 51, 73–108 (1979).

    Google Scholar 

  • 58.

    Spencer, C. N. & Hauer, F. R. Phosphorus and nitrogen dynamics in streams during a wildfire. J. North Am. Benthol. Soc. 10, 24–30 (1991).

    Google Scholar 

  • 59.

    Moody, J. A. & Martin, D. A. Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range. Earth Surf. Process. Landf. 26, 1049–1070 (2001).

    Google Scholar 

  • 60.

    Guieu, C., Bonnet, S., Wagener, T. & Loye-Piot, M.-D. Biomass burning as a source of dissolved iron to the open ocean? Geophys. Res. Lett. 32, L19608 (2005).

    Google Scholar 

  • 61.

    Shakesby, R. A. & Doerr, S. H. Wildfire as a hydrological and geomorphological agent. Earth Sci. Rev. 74, 269–307 (2006).

    Google Scholar 

  • 62.

    Kaiho, K. et al. A forest fire and soil erosion event during the Late Devonian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 392, 272–280 (2013).

    Google Scholar 

  • 63.

    Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, tropical Atlantic Ocean, and Southern Ocean. Proc. Natl Acad. Sci. USA 116, 16216–16221 (2019).

    Google Scholar 

  • 64.

    Leckie, R. M., Yuretich, R. F., West, O. L. O., Finkelstein, D. & Schmidt, M. in Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA Vol. 6 (eds Dean, W. E. & Arthur, M. A.) 101–126 (Society for Sedimentary Geology, 1998).

  • 65.

    Pogge von Strandmann, P. A. E., Jenkyns, H. C. & Woodfine, R. G. Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nat. Geosci. 6, 668–672 (2013).

    Google Scholar 

  • 66.

    Blättler, C. L., Jenkyns, H. C., Reynard, L. M. & Henderson, G. H. Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes. Earth Planet. Sci. Lett. 309, 77–88 (2011).

    Google Scholar 

  • 67.

    Knoll, M. A. & James, W. C. Effect of the advent and diversification of vascular land plants on mineral weathering through geologic time. Geology 15, 1099–1102 (1987).

    Google Scholar 

  • 68.

    Lenton, T. M. & Watson, A. J. Redfield revisited: what regulates the oxygen content of the atmosphere? Glob. Biogeochem. Cycles 14, 149–168 (2000).

    Google Scholar 

  • 69.

    Likens, G. E., Bormann, F. H. & Johnson, N. M. in Some Perspectives of the Major Biogeochemical Cycles (ed. Likens, G. E.) 93–112 (John Wiley & Sons, 1981).

  • 70.

    Boudinot, F. G. et al. Neritic ecosystem response to Oceanic Anoxic Event 2 in the Cretaceous Western Interior Seaway, USA. Palaeogeogr. Palaeoclimaol. Palaeoecol. 546, 109673 (2020).

    Google Scholar 

  • 71.

    Sinninghe Damsté, J. S., van Bentum, E. C., Reichart, G.-J., Pross, J. & Schouten, S. A CO2 decrease-driven cooling and increased latitudinal temperature gradient during the mid-Cretaceous Oceanic Anoxic Event 2. Earth Planet. Sci. Lett. 293, 97–103 (2010).

    Google Scholar 

  • 72.

    Van Helmond, N. A. G. M. et al. Equatorward phytoplankton migration during a cold spell within the Late Cretaceous super-greenhouse. Biogeosciences 13, 2856–2872 (2016).

    Google Scholar 

  • 73.

    Forster, A., Schouten, S., Moriya, K., Wilson, P. A. & Sinninghe Damsté, J. S. Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event 2: sea surface temperature records from the equatorial Atlantic. Paleoceanogr. 22, PA1219 (2007).

    Google Scholar 

  • 74.

    Boudinot, F. G. and Sepúlveda, J. Organic geochemistry of SH#1 core: fires. PANGAEA https://doi.pangaea.de/10.1594/PANGAEA.921198 (2020).


  • Source: Ecology - nature.com

    Publisher Correction: Science diplomacy for plant health

    Validating the physics behind the new MIT-designed fusion experiment