Wigington, C. H. et al. Re-examination of the relationship between marine virus and microbial cell abundances. Nat. Microbiol. 1, 15024 (2016).
Suttle, C. A. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).
Brussaard, C. P. D. et al. Global-scale processes with a nanoscale drive: the role of marine viruses. ISME J. 2, 575–578 (2008).
Danovaro, R. et al. Marine viruses and global climate change. FEMS Microbiol. Rev. 35, 993–1034 (2011).
Weitz, J. & Wilhelm, S. Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biol. Rep. 4, 2–9 (2012).
Mojica, K. D. A., Huisman, J., Wilhelm, S. W. & Brussaard, C. P. D. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 10, 500–514 (2015).
Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000).
Mojica, K. D. A. & Brussaard, C. P. D. Factors affecting virus dynamics and microbial host-virus interactions in marine environments. FEMS Microbiol. Ecol. 89, 495–515 (2014).
Brussaard, C. P. D., Kuipers, B. & Veldhuis, M. J. W. A mesocosm study of Phaeocystis globosa population dynamics: I. Regulatory role of viruses in bloom control. Harmful Algae 4, 859–874 (2005).
Syngouna, V. I. & Chrysikopoulos, C. V. Interaction between viruses and clays in static and dynamic batch systems. Environ. Sci. Technol. 44, 4539–44 (2010).
Lipson, S. M. & Stotzky, G. Specificity of virus adsorption to clay minerals. Can. J. Microbiol., https://doi.org/10.1139/m85-011 (1985).
Suttle, C. A. & Chen, F. Mechanisms and rates of decay of marine viruses in seawater. Appl. Environ. Microbiol. 58, 3721–3729 (1992).
González, J. & Suttle, C. A. Grazing by marine nanoflagellates on virus-sized particles: ingestion and digestion. Mar. Ecol. Prog. Ser. 94, 1–10 (1993).
Hadas, E., Marie, D., Shpigel, M. & Ilan, M. Virus predation by sponges is a new nutrient-flow pathway in coral reef food webs. Limnol. Oceanogr. 51, 1548–1550 (2006).
Lawrence, J. et al. Viruses on the menu: The appendicularian Oikopleura dioica efficiently removes viruses from seawater. Limnol. Oceanogr. 63, S244–S253 (2017).
Welsh, J. E., van der Meer, J., Brussaard, C. P. D. & Thieltges, D. W. Inventory of organisms interfering with transmission of a marine trematode. J. Mar. Biol. Assoc. United Kingdom 94, 697–702 (2014).
Thieltges, D. W., Bordalo, M. D., Caballero Hernandez, A., Prinz, K. & Jensen, K. T. Ambient fauna impairs parasite transmission in a marine parasite-host system. Parasitology 135, 1111–1116 (2008).
Thieltges, D. W., Reise, K., Prinz, K. & Jensen, K. T. Invaders interfere with native parasite–host interactions. Biol. Invasions 11, 1421–1429 (2009).
Prinz, K., Kelly, T. C., Riordan, R. M. O. & Culloty, S. C. Non-host organisms affect transmission processes in two common trematode parasites of rocky shores. Mar. Biol. 156, 2303–2311 (2009).
Kaplan, A. T., Rebhal, S., Lafferty, K. D. & Kuris, A. M. Small estuarine fishes feed on large trematode cercariae: lab and field investigations. J. Parasitol. 95, 477–480 (2009).
Johnson, P. T. J., Lund, P. J., Hartson, R. B. & Yoshino, T. P. Community diversity reduces Schistosoma mansoni transmission, host pathology and human infection risk. Proc. Biol. Sci. 276, 1657–63 (2009).
Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).
Welsh, J. E., Liddell, C., van der Meer, J. & Thieltges, D. W. Parasites as prey: the effect of cercarial density and alternative prey on consumption of cercariae by four non-host species. Parasitology 144, 1775–1782 (2017).
Goedknegt, M. A. Pacific oysters and parasites: Species invasions and their impact on parasite-host interactions. (VU University Amsterdam, The Netherlands., 2017).
Baudoux, A. C. & Brussaard, C. P. D. Characterization of different viruses infecting the marine harmful algal bloom species Phaeocystis globosa. Virology 341, 80–90 (2005).
Brussaard, C. P. D. Optimization of procedures for counting viruses by flow cytometry. Appl. Environ. Microbiol. 70, 1506–1513 (2004).
Lancelot, C. & Billen, G. Activity of heterotrophic bacteria and its coupling to primary production during the spring phytoplankton bloom in the southern bight of the North Sea. Limnol. Oceanogr. 29, 721–730 (1984).
Cadée, G. C. & Hegeman, J. Seasonal and annual variation in phaeocystis pouchetii (haptophyceae) in the westernmost inlet of the Wadden Sea during the 1973 to 1985 period. Netherlands J. Sea Res. 20, 29–36 (1986).
Cadée, G. C. & Hegeman, J. Phytoplankton in the Marsdiep at the end of the 20th century; 30 years monitoring biomass, primary production, and Phaeocystis blooms. J. Sea Res. 48, 97–110 (2002).
Baudoux, A., Noordeloos, A., Veldhuis, M. & Brussaard, C. Virally induced mortality of Phaeocystis globosa during two spring blooms in temperate coastal waters. Aquat. Microb. Ecol. 44, 207–217 (2006).
Ruardij, P., Veldhuis, M. & Brussaard, C. Modeling the bloom dynamics of the polymorphic phytoplankter: impact of grazers and viruses. Harmful Algae 4, 941–963 (2005).
Maat, D. S. & Brussaard, C. P. D. Both phosphorus- and nitrogen limitation constrain viral proliferation in marine phytoplankton. Aquat. Microb. Ecol. 77, 87–97 (2016).
Suttle, C. A. Handbook of methods in aquatic microbial ecology. (CRC Press, 1993).
Mojica, K. D. A., Evans, C. & Brussaard, C. P. D. Flow cytometric enumeration of marine viral populations at low abundances. Aquat. Microb. Ecol. 71, 203–209 (2014).
Gosling, E. Bivalve Molluscs: Biology, Ecology and Culture. (John Wiley & Sons, 2003).
Petersen, J. K. & Riisgard, H. U. Filtration capacity of the ascidian Ciona intestinalis and its grazing impact in a shallow fjord. Mar. Ecol. Prog. Ser. 88, 9–17 (1992).
Cebrian, E., Agell, G., Martí, R. & Uriz, M. J. Response of the Mediterranean sponge Chondrosia reniformis Nardo to copper pollution. Environ. Pollut. 141, 452–458 (2006).
Maldonado, M. et al. Selective feeding by sponges on pathogenic microbes: a reassessment of potential for abatement of microbial pollution. Mar. Ecol. Prog. Ser. 403, 75–89 (2010).
Petersen, J. K. Ascidian suspension feeding. J. Exp. Mar. Bio. Ecol. 342, 127–137 (2007).
Petersen, J. K. & Riisgard, H. U. Filtration capacity of the ascidian Ciona intestinalis and its grazing impact in a shallow fjord. Mar. Ecol. Prog. Ser., https://doi.org/10.3354/meps088009 (1992).
Hansen, B. W. et al. Swimming behavior and prey retention of the polychaete larvae Polydora ciliate (Johnston). J. Exp. Biol. 213, 3237–3246 (2010).
Kiørboe, T., Saiz, E. & Viitasalo, M. Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 143, 65–75 (1996).
Jonsson, P. & Tiselius, P. Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates. Mar. Ecol. Prog. Ser. 60, 35–44 (1990).
Riisgård, H. The stony road to reliable filtration rate measurements in bivalves: a reply. Mar. Ecol. Prog. Ser. 215, 307–310 (2001).
Hejkal, T. W. & Gerba, C. P. Uptake and survial of enteric viruses in the blue crab, Callinectes sapidus. Appl. Environ. Microbiol. 41, 207–211 (1981).
Gerba, C. P. & Goyal, S. M. Detection and occurrence of enteric viruses in shellfish: a review. J. Food Prot. 41, 743–754 (1978).
Bookelaar, B. E., Reilly, A. J. O., Lynch, S. A. & Culloty, S. C. Role of the intertidal predatory shore crab Carcinus maenas in transmission dynamics of ostreid herpesvirus-1 microvariant. Dis. Aquat. Organ. 130, 221–233 (2018).
DiGirolamo, R., Wiczynski, L., Daley, M., Miranda, F. & Viehweger, C. Uptake of bacteriophage and their subsequent survival in edible west coast crabs after processing. Appl. Microbiol. 23, 1073–1076 (1972).
La Bella, G. et al. Food-Borne Viruses in Shellfish: Investigation on Norovirus and HAV Presence in Apulia (SE Italy). Food Environ. Virol. 9, 179–186 (2017).
McLeod, C., Hay, B., Grant, C., Greening, G. & Day, D. Inactivation and elimination of human enteric viruses by Pacific oysters. J. Appl. Microbiol. 107, 1809–1818 (2009).
Faust, C., Stallknecht, D., Swayne, D. & Brown, J. Filter-feeding bivalves can remove avian influenza viruses from water and reduce infectivity. Proc. R. Soc. B Biol. Sci. 276, 3727–35 (2009).
Galaktionov, K. V. & Dobrovolskij, A. A. The Biology and Evolution of Trematodes: An Essay on the Biology, Morphology, Life Cycles, Transmission, and Evolution of Digenetic Trematodes. (Springer Science & Business Media, 2003), https://doi.org/10.1007/978-94-017-3247-5.
Reiswig, H. M. Bacteria as food for temperate-water marine sponges. Can. J. Zool. 53, 582–589 (1975).
Sidri, M. Chondrilla nucula (Porifera, Demonspongiae): an example of successful plasticity. Ecological and morphological aspects. (Biologisches Institut der Universität Stuttgart, 2004).
Peterson, B. J., Chester, C. M., Jochem, F. J. & Fourqurean, J. W. Potential role of sponge communities in controlling phytoplankton blooms in Florida Bay. Mar. Ecol. Prog. Ser. 328, 93–103 (2006).
Ledda, F. D., Pronzato, R. & Manconi, R. Mariculture for bacterial and organic waste removal: A field study of sponge filtering activity in experimental farming. Aquac. Res. 45, 1389–1401 (2014).
De Goeij, J. M., V D Berg, H., Van Oostveen, M. M., Epping, E. H. G. & Van Duyl, F. C. Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar. Ecol. Prog. Ser. 357, 139–151 (2008).
Torrella, F. & Morita, R. Y. Evidence by electron micrographs for a high incidence of bacteriophage particles in the waters of Yaquina Bay, Oregon: Ecological and taxonomical implications. Appl. Environ. Microbiol. 37, 774–778 (1979).
Jover, L. F., Effler, T. C., Buchan, A., Wilhelm, S. W. & Weitz, J. S. The elemental composition of virus particles: Implications for marine biogeochemical cycles. Nat. Rev. Microbiol. 12, 519–528 (2014).
Barthel, D. On the ecophysiology of the sponge Halichondria panicea in Kiel Bight. II. Biomass, production, energy budget and integration in environmental processes.” Marine ecology progress series. Mar. Ecol. 43, 87–93 (1988).
Baudoux, A.-C. C. The role of viruses in marine phytoplankton mortality. (University of Groningen, the Netherlands, 2007).
Frost, T. M. In situ measurements of clearance rates for the freshwater sponge Spongilla lucustris. Limnol. Oceanogr. 23, 1034–1039 (1978).
Stuart, V. & Klumpp, D. W. Evidence for food-resource partitioning by kelp-bed filter feeders. Mar. Ecol. Prog. Ser. 16, 27–37 (1984).
De Goeij, J. M. et al. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science (80-.). 342, 108–110 (2013).
Brussaard, C. P. D. Viral control of phytoplankton populations – a review. J. Eukaryot. Microbiol. 51, 125–138 (2004).
Brussaard, C. P. D., Bratbak, G., Baudoux, A.-C. & Ruardij, P. Phaeocystis and its interaction with viruses. Biogeochemistry 83, 201–215 (2007).
Hallegraeff, G. M. A review of harmful algal blooms and their apparent global increase. Phycologia 32, 79–99 (1993).
Cloern, J. & Dufford, R. Phytoplankton community ecology: principles applied in San Francisco Bay. Mar. Ecol. Prog. Ser. 285, 11–28 (2005).
Ribes, M., Coma, R. & Gili, J. Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Mar. Ecol. Prog. Ser. 176, 179–190 (1999).
Hanson, C. E., McLaughlin, M. J., Hyndes, G. A. & Strzelecki, J. Selective uptake of prokaryotic picoplankton by a marine sponge (Callyspongia sp.) within an oligotrophic coastal system. Estuar. Coast. Shelf Sci. 84, 289–297 (2009).
McMurray, S. E., Johnson, Z. I., Hunt, D. E., Pawlik, J. R. & Finelli, C. M. Selective feeding by the giant barrel sponge enhances foraging efficiency. Limnol. Oceanogr. 61, 1271–1286 (2016).
Yahel, G., Eerkes-Medrano, D. I. & Leys, S. P. Size independent selective filtration of ultraplankton by hexactinellid glass sponges. Aquat. Microb. Ecol. 45, 181–194 (2006).
Turon, X., Galera, J. & Uriz, M. J. Clearance rates and aquiferous systems in two sponges with contrasting life-history strategies. J. Exp. Zool. 278, 22–36 (1997).
Riisgård, H. U. & Larsen, P. S. Particle capture mechanisms in suspension-feeding invertebrates. Mar. Ecol. Prog. Ser. 418, 255–293 (2010).
Yahel, G. et al. In situ feeding and metabolism of glass sponges (Hexactinellida, Porifera) studied in a deep temperate operated fjord. Limnol. Oceanogr. 52, 428–440 (2007).
Riisgård, H. U., Thomassen, S., Jakobsen, H., Weeks, J. M. & Larsen, P. S. Suspention feeding in marine sponges Halichondria panicea and Halichondria urceolus: effects of temperature on filtration rate and energy cost of pumping. Mar. Ecol. Prog. Ser. 96, 177–188 (1993).
Larsen, P. S. & Riisgåd, H. U. The sponge pump. J. Theor. Biol. 168, 53–63 (1994).
Connell, S. D. & Glasby, T. M. Do urban structures influence local abundance and diversity of subtidal epibiota? A case study from Sydney Harbour, Australia. Mar. Environ. Res. 47, 373–387 (1999).
Diaz, C. & Rützler, K. Sponges: An essential component of Caribbean coral reefs. Bull. Mar. Sci. 69, 535–546 (2001).
Hogg, M. M. et al. Deep-sea Sponge Grounds: Reservoirs of Biodiversity. UNEP-WCMC Biodiversity Series No. 32. UNEP-WCMC, Cambridge, UK. (2010).
Beazley, L. I., Kenchington, E. L., Murillo, F. J. & del Mar Sacau, M. Deep-sea sponge grounds enhance diversity and abundance of epibenthic megafauna in the Northwest Atlantic. ICES J. Mar. Sci. 70, 1471–1490 (2013).
Bell, J. J. & Smith, D. P. Ecology of sponges (Porifera) in the Wakatobi region, south-eastern Sulawesi, Indonesia: richness and abundance. J. Mar. Biol. Assoc. United Kingdom 84, 581–591 (2004).
Bell, J. J. The sponge community in a semi-submerged temperate sea cave: Density, diversity and richness. Mar. Ecol. 23, 297–311 (2002).
Brussaard, C. P. D., Mari, X., Van Bleijswijk, J. D. L. & Veldhuis, M. J. W. A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics: II. Significance for the microbial community. Harmful Algae 4, 875–893 (2005).
Gerba, C. P. Applied and theoretical aspects of virus adsorption to surfaces. Adv. Appl. Microbiol. 30, 133–168 (1984).
Lipson, S. M. & Stotzky, G. Effect of proteins on reovirus adsorption to clay minerals. Appl. Environ. Microbiol. 48, 525–530 (1984).
Source: Ecology - nature.com