in

Marine virus predation by non-host organisms

  • 1.

    Wigington, C. H. et al. Re-examination of the relationship between marine virus and microbial cell abundances. Nat. Microbiol. 1, 15024 (2016).

  • 2.

    Suttle, C. A. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

  • 3.

    Brussaard, C. P. D. et al. Global-scale processes with a nanoscale drive: the role of marine viruses. ISME J. 2, 575–578 (2008).

  • 4.

    Danovaro, R. et al. Marine viruses and global climate change. FEMS Microbiol. Rev. 35, 993–1034 (2011).

  • 5.

    Weitz, J. & Wilhelm, S. Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biol. Rep. 4, 2–9 (2012).

    • Google Scholar
  • 6.

    Mojica, K. D. A., Huisman, J., Wilhelm, S. W. & Brussaard, C. P. D. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 10, 500–514 (2015).

  • 7.

    Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000).

  • 8.

    Mojica, K. D. A. & Brussaard, C. P. D. Factors affecting virus dynamics and microbial host-virus interactions in marine environments. FEMS Microbiol. Ecol. 89, 495–515 (2014).

  • 9.

    Brussaard, C. P. D., Kuipers, B. & Veldhuis, M. J. W. A mesocosm study of Phaeocystis globosa population dynamics: I. Regulatory role of viruses in bloom control. Harmful Algae 4, 859–874 (2005).

    • Article
    • Google Scholar
  • 10.

    Syngouna, V. I. & Chrysikopoulos, C. V. Interaction between viruses and clays in static and dynamic batch systems. Environ. Sci. Technol. 44, 4539–44 (2010).

  • 11.

    Lipson, S. M. & Stotzky, G. Specificity of virus adsorption to clay minerals. Can. J. Microbiol., https://doi.org/10.1139/m85-011 (1985).

  • 12.

    Suttle, C. A. & Chen, F. Mechanisms and rates of decay of marine viruses in seawater. Appl. Environ. Microbiol. 58, 3721–3729 (1992).

  • 13.

    González, J. & Suttle, C. A. Grazing by marine nanoflagellates on virus-sized particles: ingestion and digestion. Mar. Ecol. Prog. Ser. 94, 1–10 (1993).

  • 14.

    Hadas, E., Marie, D., Shpigel, M. & Ilan, M. Virus predation by sponges is a new nutrient-flow pathway in coral reef food webs. Limnol. Oceanogr. 51, 1548–1550 (2006).

  • 15.

    Lawrence, J. et al. Viruses on the menu: The appendicularian Oikopleura dioica efficiently removes viruses from seawater. Limnol. Oceanogr. 63, S244–S253 (2017).

    • Article
    • Google Scholar
  • 16.

    Welsh, J. E., van der Meer, J., Brussaard, C. P. D. & Thieltges, D. W. Inventory of organisms interfering with transmission of a marine trematode. J. Mar. Biol. Assoc. United Kingdom 94, 697–702 (2014).

    • Article
    • Google Scholar
  • 17.

    Thieltges, D. W., Bordalo, M. D., Caballero Hernandez, A., Prinz, K. & Jensen, K. T. Ambient fauna impairs parasite transmission in a marine parasite-host system. Parasitology 135, 1111–1116 (2008).

  • 18.

    Thieltges, D. W., Reise, K., Prinz, K. & Jensen, K. T. Invaders interfere with native parasite–host interactions. Biol. Invasions 11, 1421–1429 (2009).

    • Article
    • Google Scholar
  • 19.

    Prinz, K., Kelly, T. C., Riordan, R. M. O. & Culloty, S. C. Non-host organisms affect transmission processes in two common trematode parasites of rocky shores. Mar. Biol. 156, 2303–2311 (2009).

    • Article
    • Google Scholar
  • 20.

    Kaplan, A. T., Rebhal, S., Lafferty, K. D. & Kuris, A. M. Small estuarine fishes feed on large trematode cercariae: lab and field investigations. J. Parasitol. 95, 477–480 (2009).

  • 21.

    Johnson, P. T. J., Lund, P. J., Hartson, R. B. & Yoshino, T. P. Community diversity reduces Schistosoma mansoni transmission, host pathology and human infection risk. Proc. Biol. Sci. 276, 1657–63 (2009).

  • 22.

    Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).

  • 23.

    Welsh, J. E., Liddell, C., van der Meer, J. & Thieltges, D. W. Parasites as prey: the effect of cercarial density and alternative prey on consumption of cercariae by four non-host species. Parasitology 144, 1775–1782 (2017).

  • 24.

    Goedknegt, M. A. Pacific oysters and parasites: Species invasions and their impact on parasite-host interactions. (VU University Amsterdam, The Netherlands., 2017).

  • 25.

    Baudoux, A. C. & Brussaard, C. P. D. Characterization of different viruses infecting the marine harmful algal bloom species Phaeocystis globosa. Virology 341, 80–90 (2005).

  • 26.

    Brussaard, C. P. D. Optimization of procedures for counting viruses by flow cytometry. Appl. Environ. Microbiol. 70, 1506–1513 (2004).

  • 27.

    Lancelot, C. & Billen, G. Activity of heterotrophic bacteria and its coupling to primary production during the spring phytoplankton bloom in the southern bight of the North Sea. Limnol. Oceanogr. 29, 721–730 (1984).

  • 28.

    Cadée, G. C. & Hegeman, J. Seasonal and annual variation in phaeocystis pouchetii (haptophyceae) in the westernmost inlet of the Wadden Sea during the 1973 to 1985 period. Netherlands J. Sea Res. 20, 29–36 (1986).

  • 29.

    Cadée, G. C. & Hegeman, J. Phytoplankton in the Marsdiep at the end of the 20th century; 30 years monitoring biomass, primary production, and Phaeocystis blooms. J. Sea Res. 48, 97–110 (2002).

  • 30.

    Baudoux, A., Noordeloos, A., Veldhuis, M. & Brussaard, C. Virally induced mortality of Phaeocystis globosa during two spring blooms in temperate coastal waters. Aquat. Microb. Ecol. 44, 207–217 (2006).

    • Article
    • Google Scholar
  • 31.

    Ruardij, P., Veldhuis, M. & Brussaard, C. Modeling the bloom dynamics of the polymorphic phytoplankter: impact of grazers and viruses. Harmful Algae 4, 941–963 (2005).

    • Article
    • Google Scholar
  • 32.

    Maat, D. S. & Brussaard, C. P. D. Both phosphorus- and nitrogen limitation constrain viral proliferation in marine phytoplankton. Aquat. Microb. Ecol. 77, 87–97 (2016).

    • Article
    • Google Scholar
  • 33.

    Suttle, C. A. Handbook of methods in aquatic microbial ecology. (CRC Press, 1993).

  • 34.

    Mojica, K. D. A., Evans, C. & Brussaard, C. P. D. Flow cytometric enumeration of marine viral populations at low abundances. Aquat. Microb. Ecol. 71, 203–209 (2014).

    • Article
    • Google Scholar
  • 35.

    Gosling, E. Bivalve Molluscs: Biology, Ecology and Culture. (John Wiley & Sons, 2003).

  • 36.

    Petersen, J. K. & Riisgard, H. U. Filtration capacity of the ascidian Ciona intestinalis and its grazing impact in a shallow fjord. Mar. Ecol. Prog. Ser. 88, 9–17 (1992).

  • 37.

    Cebrian, E., Agell, G., Martí, R. & Uriz, M. J. Response of the Mediterranean sponge Chondrosia reniformis Nardo to copper pollution. Environ. Pollut. 141, 452–458 (2006).

  • 38.

    Maldonado, M. et al. Selective feeding by sponges on pathogenic microbes: a reassessment of potential for abatement of microbial pollution. Mar. Ecol. Prog. Ser. 403, 75–89 (2010).

  • 39.

    Petersen, J. K. Ascidian suspension feeding. J. Exp. Mar. Bio. Ecol. 342, 127–137 (2007).

    • Article
    • Google Scholar
  • 40.

    Petersen, J. K. & Riisgard, H. U. Filtration capacity of the ascidian Ciona intestinalis and its grazing impact in a shallow fjord. Mar. Ecol. Prog. Ser., https://doi.org/10.3354/meps088009 (1992).

  • 41.

    Hansen, B. W. et al. Swimming behavior and prey retention of the polychaete larvae Polydora ciliate (Johnston). J. Exp. Biol. 213, 3237–3246 (2010).

  • 42.

    Kiørboe, T., Saiz, E. & Viitasalo, M. Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 143, 65–75 (1996).

  • 43.

    Jonsson, P. & Tiselius, P. Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates. Mar. Ecol. Prog. Ser. 60, 35–44 (1990).

  • 44.

    Riisgård, H. The stony road to reliable filtration rate measurements in bivalves: a reply. Mar. Ecol. Prog. Ser. 215, 307–310 (2001).

  • 45.

    Hejkal, T. W. & Gerba, C. P. Uptake and survial of enteric viruses in the blue crab, Callinectes sapidus. Appl. Environ. Microbiol. 41, 207–211 (1981).

  • 46.

    Gerba, C. P. & Goyal, S. M. Detection and occurrence of enteric viruses in shellfish: a review. J. Food Prot. 41, 743–754 (1978).

  • 47.

    Bookelaar, B. E., Reilly, A. J. O., Lynch, S. A. & Culloty, S. C. Role of the intertidal predatory shore crab Carcinus maenas in transmission dynamics of ostreid herpesvirus-1 microvariant. Dis. Aquat. Organ. 130, 221–233 (2018).

  • 48.

    DiGirolamo, R., Wiczynski, L., Daley, M., Miranda, F. & Viehweger, C. Uptake of bacteriophage and their subsequent survival in edible west coast crabs after processing. Appl. Microbiol. 23, 1073–1076 (1972).

  • 49.

    La Bella, G. et al. Food-Borne Viruses in Shellfish: Investigation on Norovirus and HAV Presence in Apulia (SE Italy). Food Environ. Virol. 9, 179–186 (2017).

  • 50.

    McLeod, C., Hay, B., Grant, C., Greening, G. & Day, D. Inactivation and elimination of human enteric viruses by Pacific oysters. J. Appl. Microbiol. 107, 1809–1818 (2009).

  • 51.

    Faust, C., Stallknecht, D., Swayne, D. & Brown, J. Filter-feeding bivalves can remove avian influenza viruses from water and reduce infectivity. Proc. R. Soc. B Biol. Sci. 276, 3727–35 (2009).

    • Article
    • Google Scholar
  • 52.

    Galaktionov, K. V. & Dobrovolskij, A. A. The Biology and Evolution of Trematodes: An Essay on the Biology, Morphology, Life Cycles, Transmission, and Evolution of Digenetic Trematodes. (Springer Science & Business Media, 2003), https://doi.org/10.1007/978-94-017-3247-5.

  • 53.

    Reiswig, H. M. Bacteria as food for temperate-water marine sponges. Can. J. Zool. 53, 582–589 (1975).

    • Article
    • Google Scholar
  • 54.

    Sidri, M. Chondrilla nucula (Porifera, Demonspongiae): an example of successful plasticity. Ecological and morphological aspects. (Biologisches Institut der Universität Stuttgart, 2004).

  • 55.

    Peterson, B. J., Chester, C. M., Jochem, F. J. & Fourqurean, J. W. Potential role of sponge communities in controlling phytoplankton blooms in Florida Bay. Mar. Ecol. Prog. Ser. 328, 93–103 (2006).

  • 56.

    Ledda, F. D., Pronzato, R. & Manconi, R. Mariculture for bacterial and organic waste removal: A field study of sponge filtering activity in experimental farming. Aquac. Res. 45, 1389–1401 (2014).

    • Article
    • Google Scholar
  • 57.

    De Goeij, J. M., V D Berg, H., Van Oostveen, M. M., Epping, E. H. G. & Van Duyl, F. C. Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar. Ecol. Prog. Ser. 357, 139–151 (2008).

  • 58.

    Torrella, F. & Morita, R. Y. Evidence by electron micrographs for a high incidence of bacteriophage particles in the waters of Yaquina Bay, Oregon: Ecological and taxonomical implications. Appl. Environ. Microbiol. 37, 774–778 (1979).

  • 59.

    Jover, L. F., Effler, T. C., Buchan, A., Wilhelm, S. W. & Weitz, J. S. The elemental composition of virus particles: Implications for marine biogeochemical cycles. Nat. Rev. Microbiol. 12, 519–528 (2014).

  • 60.

    Barthel, D. On the ecophysiology of the sponge Halichondria panicea in Kiel Bight. II. Biomass, production, energy budget and integration in environmental processes.” Marine ecology progress series. Mar. Ecol. 43, 87–93 (1988).

    • Article
    • Google Scholar
  • 61.

    Baudoux, A.-C. C. The role of viruses in marine phytoplankton mortality. (University of Groningen, the Netherlands, 2007).

  • 62.

    Frost, T. M. In situ measurements of clearance rates for the freshwater sponge Spongilla lucustris. Limnol. Oceanogr. 23, 1034–1039 (1978).

  • 63.

    Stuart, V. & Klumpp, D. W. Evidence for food-resource partitioning by kelp-bed filter feeders. Mar. Ecol. Prog. Ser. 16, 27–37 (1984).

  • 64.

    De Goeij, J. M. et al. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science (80-.). 342, 108–110 (2013).

  • 65.

    Brussaard, C. P. D. Viral control of phytoplankton populations – a review. J. Eukaryot. Microbiol. 51, 125–138 (2004).

  • 66.

    Brussaard, C. P. D., Bratbak, G., Baudoux, A.-C. & Ruardij, P. Phaeocystis and its interaction with viruses. Biogeochemistry 83, 201–215 (2007).

    • Article
    • Google Scholar
  • 67.

    Hallegraeff, G. M. A review of harmful algal blooms and their apparent global increase. Phycologia 32, 79–99 (1993).

    • Article
    • Google Scholar
  • 68.

    Cloern, J. & Dufford, R. Phytoplankton community ecology: principles applied in San Francisco Bay. Mar. Ecol. Prog. Ser. 285, 11–28 (2005).

  • 69.

    Ribes, M., Coma, R. & Gili, J. Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Mar. Ecol. Prog. Ser. 176, 179–190 (1999).

  • 70.

    Hanson, C. E., McLaughlin, M. J., Hyndes, G. A. & Strzelecki, J. Selective uptake of prokaryotic picoplankton by a marine sponge (Callyspongia sp.) within an oligotrophic coastal system. Estuar. Coast. Shelf Sci. 84, 289–297 (2009).

  • 71.

    McMurray, S. E., Johnson, Z. I., Hunt, D. E., Pawlik, J. R. & Finelli, C. M. Selective feeding by the giant barrel sponge enhances foraging efficiency. Limnol. Oceanogr. 61, 1271–1286 (2016).

  • 72.

    Yahel, G., Eerkes-Medrano, D. I. & Leys, S. P. Size independent selective filtration of ultraplankton by hexactinellid glass sponges. Aquat. Microb. Ecol. 45, 181–194 (2006).

    • Article
    • Google Scholar
  • 73.

    Turon, X., Galera, J. & Uriz, M. J. Clearance rates and aquiferous systems in two sponges with contrasting life-history strategies. J. Exp. Zool. 278, 22–36 (1997).

    • Article
    • Google Scholar
  • 74.

    Riisgård, H. U. & Larsen, P. S. Particle capture mechanisms in suspension-feeding invertebrates. Mar. Ecol. Prog. Ser. 418, 255–293 (2010).

  • 75.

    Yahel, G. et al. In situ feeding and metabolism of glass sponges (Hexactinellida, Porifera) studied in a deep temperate operated fjord. Limnol. Oceanogr. 52, 428–440 (2007).

  • 76.

    Riisgård, H. U., Thomassen, S., Jakobsen, H., Weeks, J. M. & Larsen, P. S. Suspention feeding in marine sponges Halichondria panicea and Halichondria urceolus: effects of temperature on filtration rate and energy cost of pumping. Mar. Ecol. Prog. Ser. 96, 177–188 (1993).

  • 77.

    Larsen, P. S. & Riisgåd, H. U. The sponge pump. J. Theor. Biol. 168, 53–63 (1994).

    • Article
    • Google Scholar
  • 78.

    Connell, S. D. & Glasby, T. M. Do urban structures influence local abundance and diversity of subtidal epibiota? A case study from Sydney Harbour, Australia. Mar. Environ. Res. 47, 373–387 (1999).

  • 79.

    Diaz, C. & Rützler, K. Sponges: An essential component of Caribbean coral reefs. Bull. Mar. Sci. 69, 535–546 (2001).

    • Google Scholar
  • 80.

    Hogg, M. M. et al. Deep-sea Sponge Grounds: Reservoirs of Biodiversity. UNEP-WCMC Biodiversity Series No. 32. UNEP-WCMC, Cambridge, UK. (2010).

  • 81.

    Beazley, L. I., Kenchington, E. L., Murillo, F. J. & del Mar Sacau, M. Deep-sea sponge grounds enhance diversity and abundance of epibenthic megafauna in the Northwest Atlantic. ICES J. Mar. Sci. 70, 1471–1490 (2013).

    • Article
    • Google Scholar
  • 82.

    Bell, J. J. & Smith, D. P. Ecology of sponges (Porifera) in the Wakatobi region, south-eastern Sulawesi, Indonesia: richness and abundance. J. Mar. Biol. Assoc. United Kingdom 84, 581–591 (2004).

    • Article
    • Google Scholar
  • 83.

    Bell, J. J. The sponge community in a semi-submerged temperate sea cave: Density, diversity and richness. Mar. Ecol. 23, 297–311 (2002).

  • 84.

    Brussaard, C. P. D., Mari, X., Van Bleijswijk, J. D. L. & Veldhuis, M. J. W. A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics: II. Significance for the microbial community. Harmful Algae 4, 875–893 (2005).

    • Article
    • Google Scholar
  • 85.

    Gerba, C. P. Applied and theoretical aspects of virus adsorption to surfaces. Adv. Appl. Microbiol. 30, 133–168 (1984).

  • 86.

    Lipson, S. M. & Stotzky, G. Effect of proteins on reovirus adsorption to clay minerals. Appl. Environ. Microbiol. 48, 525–530 (1984).


  • Source: Ecology - nature.com

    The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography

    Understanding the impact of climate change on the ocean