in

Metabolic trait diversity shapes marine biogeography

  • 1.

    Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl Acad. Sci. USA 111, 13690–13696 (2014).

    ADS  PubMed  Google Scholar 

  • 2.

    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford Univ. Press, 2009).

  • 3.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).

    PubMed  Google Scholar 

  • 4.

    Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Ecophysiology. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).

    ADS  PubMed  Google Scholar 

  • 5.

    Mandic, M., Todgham, A. E. & Richards, J. G. Mechanisms and evolution of hypoxia tolerance in fish. Proc. R. Soc. B 276, 735–744 (2009).

    PubMed  Google Scholar 

  • 6.

    Seibel, B. A. & Drazen, J. C. The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Phil. Trans. R. Soc. Lond. B 362, 2061–2078 (2007).

    Google Scholar 

  • 7.

    Brey, T. An empirical model for estimating aquatic invertebrate respiration. Methods Ecol. Evol. 1, 92–101 (2010).

    Google Scholar 

  • 8.

    Peterson, C. C., Nagy, K. A. & Diamond, J. Sustained metabolic scope. Proc. Natl Acad. Sci. USA 87, 2324–2328 (1990).

    ADS  PubMed  Google Scholar 

  • 9.

    Hammond, K. A. & Diamond, J. Maximal sustained energy budgets in humans and animals. Nature 386, 457–462 (1997).

    ADS  PubMed  Google Scholar 

  • 10.

    Fry, F. E. J. Effect of the environment on animal activity. Univ. Tor. Stud. Biol. Ser. 55, 1–62 (1947).

    Google Scholar 

  • 11.

    Brett, J. R. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Am. Zool. 11, 99–113 (1971).

    Google Scholar 

  • 12.

    Pörtner, H.-O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).

    PubMed  Google Scholar 

  • 13.

    Piiper, J., Dejours, P., Haab, P. & Rahn, H. Concepts and basic quantities in gas exchange physiology. Respir. Physiol. 13, 292–304 (1971).

    PubMed  Google Scholar 

  • 14.

    Chan, F. et al. Emergence of anoxia in the California current large marine ecosystem. Science 319, 920 (2008).

    ADS  PubMed  Google Scholar 

  • 15.

    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    ADS  PubMed  Google Scholar 

  • 16.

    Wishner, K. F. et al. Ocean deoxygenation and zooplankton: very small oxygen differences matter. Sci. Adv. 4, eaau5180 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Howard, E. M. et al. Climate-driven aerobic habitat loss in the California current system. Sci. Adv. 6, eaay3188 (2020).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Nilsson, G. E. & Östlund-Nilsson, S. Does size matter for hypoxia tolerance in fish? Biol. Rev. Camb. Philos. Soc. 83, 173–189 (2008).

    PubMed  Google Scholar 

  • 19.

    DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl Acad. Sci. USA 107, 12941–12945 (2010).

    ADS  PubMed  Google Scholar 

  • 20.

    Deutsch, C., Brix, H., Ito, T., Frenzel, H. & Thompson, L. Climate-forced variability of ocean hypoxia. Science 333, 336–339 (2011).

    ADS  PubMed  Google Scholar 

  • 21.

    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).

    ADS  PubMed  Google Scholar 

  • 22.

    Verberk, W. C. E. P., Bilton, D. T., Calosi, P. & Spicer, J. I. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns. Ecology 92, 1565–1572 (2011).

    PubMed  Google Scholar 

  • 23.

    Emerson, S. & Hedges, J. Chemical Oceanography and the Marine Carbon Cycle (Cambridge Univ. Press, 2008).

  • 24.

    Kristensen, E. Ventilation and oxygen uptake by three species of Nereis (Annelida: Polychaeta). II. Effects of temperature and salinity changes.  Mar. Ecol. Prog. Ser. 12, 229–306 (1983).

  • 25.

    Gehrke, P. C. Response surface analysis of teleost cardio-respiratory responses to temperature and dissolved oxygen. Comp. Biochem. Physiol. A 89, 587–592 (1988).

    Google Scholar 

  • 26.

    Spitzer, K. W., Marvin, D. E. Jr & Heath, A. G. The effect of temperature on the respiratory and cardiac response of the bluegill sunfish to hypoxia. Comp. Biochem. Physiol. 30, 83–90 (1969).

    PubMed  Google Scholar 

  • 27.

    Kielland, Ø. N., Bech, C. & Einum, S. Warm and out of breath: thermal phenotypic plasticity in oxygen supply. Funct. Ecol. 33, 2142–2149 (2019).

    Google Scholar 

  • 28.

    Chung, M.-T., Trueman, C. N., Godiksen, J. A., Holmstrup, M. E. & Grønkjær, P. Field metabolic rates of teleost fishes are recorded in otolith carbonate. Commun. Biol. 2, 24 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Pörtner, H.-O. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).

    PubMed  Google Scholar 

  • 30.

    Verberk, W. C. E. P., Durance, I., Vaughan, I. P. & Ormerod, S. J. Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms. Glob. Change Biol. 22, 1769–1778 (2016).

    ADS  Google Scholar 

  • 31.

    Verberk, W. C. E. P., Leuven, R. S. E. W., van der Velde, G. & Gabel, F. Thermal limits in native and alien freshwater peracarid Crustacea: the role of habitat use and oxygen limitation. Funct. Ecol. 32, 926–936 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 32.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    ADS  Google Scholar 

  • 33.

    Verberk, W. C. E. P. et al. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comp. Biochem. Physiol. A 192, 64–78 (2016).

    Google Scholar 

  • 34.

    Lefevre, S. Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO2 and their interaction. Conserv. Physiol. 4, cow009 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    Jutfelt, F. et al. Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. J. Exp. Biol. 221, jeb169615 (2018).

    PubMed  Google Scholar 

  • 36.

    Ern, R., Norin, T., Gamperl, A. K. & Esbaugh, A. J. Oxygen dependence of upper thermal limits in fishes. J. Exp. Biol. 219, 3376–3383 (2016).

    PubMed  Google Scholar 

  • 37.

    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    ADS  PubMed  Google Scholar 

  • 38.

    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).

    ADS  PubMed  Google Scholar 

  • 39.

    Rummer, J. L. et al. Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures. Glob. Change Biol. 20, 1055–1066 (2014).

    ADS  Google Scholar 

  • 40.

    Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).

    ADS  PubMed  Google Scholar 

  • 41.

    Killen, S. S. et al. Ecological influences and morphological correlates of resting and maximal metabolic rates across teleost fish species. Am. Nat. 187, 592–606 (2016).

    PubMed  Google Scholar 

  • 42.

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    ADS  PubMed  Google Scholar 

  • 43.

    Malte, H. & Weber, R. E. A mathematical model for gas exchange in the fish gill based on non-linear blood gas equilibrium curves. Respir. Physiol. 62, 359–374 (1985).

    PubMed  Google Scholar 

  • 44.

    Rogers, N. J., Urbina, M. A., Reardon, E. E., McKenzie, D. J. & Wilson, R. W. A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (P crit). Conserv. Physiol. 4, cow012 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Locarnini, R. A. et al. World Ocean Atlas 2013. Volume 1: Temperature (National Centers for Environmental Information, National Oceanic and Atmospheric Administration, 2013).

  • 46.

    Garcia, H. E. et al. World Ocean Atlas 2013, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation (National Centers for Environmental Information, National Oceanic and Atmospheric Administration, 2013).

  • 47.

    Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24 https://doi.org/10.7289/V5C8276M (2009)

  • 48.

    Shawe-Taylor, J. & Cristianini, N. Kernel Methods for Pattern Analysis (Cambridge Univ. Press, 2004).

  • 49.

    Liu, C., White, M. & Newell, G. Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography 34, 232–243 (2011).

    Google Scholar 

  • 50.

    Schurmann, H. & Steffensen, J. F. Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod. J. Fish Biol. 50, 1166–1180 (1997).

    Google Scholar 

  • 51.

    Heath, A. G. & Hughes, G. M. Cardiovascular and respiratory changes during heat stress in rainbow trout (Salmo gairdneri). J. Exp. Biol. 59, 323–338 (1973).

    PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Did our early ancestors boil their food in hot springs?

    MIT Integrative Microbiology Initiative will stimulate environmental microbiology research