in

Methods matter in repeating ocean acidification studies

  • 1.

    Clark, T. D. et al. Ocean acidification does not impair the behaviour of coral reef fishes. Nature 577, 370–375 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Munday, P. L., Jarrold, M. D. & Nagelkerken, I. in Fish Physiology: Carbon Dioxide Vol. 37 (eds Grosell, M. et al.) 323–368 (Elsevier, 2019).

  • 3.

    Munday, P. L. et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Natl Acad. Sci. USA 106, 1848–1852 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Munday, P. L. et al. Replenishment of fish populations is threatened by ocean acidification. Proc. Natl Acad. Sci. USA 107, 12930–12934 (2010).

    ADS  CAS  Google Scholar 

  • 5.

    Dixson, D. L., Munday, P. L. & Jones, G. P. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol. Lett. 13, 68–75 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 6.

    Munday, P. L. et al. Effects of elevated CO2 on predator avoidance behaviour by reef fishes is not altered by experimental test water. PeerJ 4, e2501 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 7.

    Jarrold, M. D., Humphrey, C., McCormick, M. I. & Munday, P. L. Diel CO2 cycles reduce severity of behavioural abnormalities in coral reef fish under ocean acidification. Sci. Rep. 7, 10153 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 8.

    McMahon, S. J., Donelson, J. M. & Munday, P. L. Food ration does not influence the effect of elevated CO2 on antipredator behaviour of a reef fish. Mar. Ecol. Prog. Ser. 586, 155–165 (2018).

    ADS  CAS  Google Scholar 

  • 9.

    Munday, P. L., Cheal, A. J., Dixson, D. L., Rummer, J. L. & Fabricius, K. E. Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nat. Clim. Change 4, 487–492 (2014).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Ferrari, M. C. O. et al. Predation in high CO2 waters: prey fish from high-risk environments are less susceptible to ocean acidification. Integr. Comp. Biol. 57, 55–62 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Ferrari, M. C. O. et al. Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Glob. Change Biol. 17, 2980–2986 (2011).

    ADS  Google Scholar 

  • 12.

    Welch, M. J., Watson, S.-A., Welsh, J. Q., McCormick, M. I. & Munday, P. L. Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. Nat. Clim. Change 4, 1086–1089 (2014).

    ADS  CAS  Google Scholar 

  • 13.

    Ferrari, M. C. O., Wisenden, B. D. & Chivers, D. P. Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Can. J. Zool. 88, 698–724 (2010).

    Google Scholar 

  • 14.

    Ferrari, M. C. O. et al. Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities. Glob. Change Biol. 21, 1848–1855 (2015).

    ADS  Google Scholar 

  • 15.

    Kats, L. B. & Dill, L. M. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5, 361–394 (1998).

    Google Scholar 

  • 16.

    Roggatz, C. C., Lorch, M., Hardege, J. D. & Benoit, D. M. Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules. Glob. Change Biol. 22, 3914–3926 (2016).

    ADS  Google Scholar 

  • 17.

    Jutfelt, F., Sundin, J., Raby, G. D., Krång, A.-S. & Clark, T. D. Two-current choice flumes for testing avoidance and preference in aquatic animals. Methods Ecol. Evol. 8, 379–390 (2017).

    Google Scholar 

  • 18.

    Domenici, P., Allan, B., McCormick, M. I. & Munday, P. L. Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biol. Lett. 8, 78–81 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Domenici, P., Allan, B. J. M., Watson, S.-A., McCormick, M. I. & Munday, P. L. Shifting from right to left: the combined effect of elevated CO2 and temperature on behavioural lateralization in a coral reef fish. PLoS ONE 9, e87969 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Nilsson, G. E. et al. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat. Clim. Change 2, 201–204 (2012).

    ADS  CAS  Google Scholar 

  • 21.

    Ferrari, M. C. O. et al. Effects of ocean acidification on visual risk assessment in coral reef fishes. Funct. Ecol. 26, 553–558 (2012).

    Google Scholar 

  • 22.

    Chung, W. S., Marshall, N. J., Watson, S.-A., Munday, P. L. & Nilsson, G. E. Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors. J. Exp. Biol. 217, 323–326 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Welch, M. & Munday, P. L Raw Data for Olfactory Response of Acanthochromis polyacanthus in a Y-maze Flume (dataset). https://doi.org/10.4225/28/5add60af3a267 (James Cook University, 2018).

  • 24.

    Schunter, C. et al. Molecular signatures of transgenerational response to ocean acidification in a species of reef fish. Nat. Clim. Change 6, 1014–1018 (2016).

    ADS  CAS  Google Scholar 

  • 25.

    Allan, B. J. M., Miller, G. M., McCormick, M. I., Domenici, P. & Munday, P. L. Parental effects improve escape performance of juvenile reef fish in a high-CO2 world. Proc. R. Soc. Lond. B 281, 20132179 (2014).

    Google Scholar 

  • 26.

    Welch, M. J. & Munday, P. L. Heritability of behavioural tolerance to high CO2 in a coral reef fish is masked by nonadaptive phenotypic plasticity. Evol. Appl. 10, 682–693 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Stiasny, M. H. et al. Ocean acidification effects on Atlantic cod larval survival and recruitment to the fished population. PLoS ONE 11, e0155448 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Murray, C. S., Wiley, D. & Baumann, H. High sensitivity of a keystone forage fish to elevated CO2 and temperature. Conserv. Physiol. 7, coz084 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Munday, P. L. et al. Elevated CO2 affects the behavior of an ecologically and economically important coral reef fish. Mar. Biol. 160, 2137–2144 (2013).

    CAS  Google Scholar 

  • 30.

    Allan, B. J. M., Domenici, P., McCormick, M. I., Watson, S.-A. & Munday, P. L. Elevated CO2 affects predator–prey interactions through altered performance. PLoS ONE 8, e58520 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Benítez, S. et al. Intertidal pool fish Girella laevifrons (Kyphosidae) shown strong physiological homeostasis but shy personality: the cost of living in hypercapnic habitats. Mar. Pollut. Bull. 118, 57–63 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 32.

    Borges, F. O. et al. Ocean warming and acidification may challenge the riverward migration of glass eels. Biol. Lett. 15, 20180627 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 33.

    Castro, J. M. et al. Painted goby larvae under high-CO2 fail to recognize reef sounds. PLoS ONE 12, e0170838 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 34.

    Chivers, D. P. et al. Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Glob. Change Biol. 20, 515–522 (2014).

    ADS  Google Scholar 

  • 35.

    Ferrari, M. C. O. et al. Putting prey and predator into the CO2 equation—qualitative and quantitative effects of ocean acidification on predator–prey interactions. Ecol. Lett. 14, 1143–1148 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Forsgren, E., Dupont, S., Jutfelt, F. & Amundsen, T. Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecol. Evol. 3, 3637–3646 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 37.

    Goldenberg, S. U. et al. Ecological complexity buffers the impacts of future climate on marine consumers. Nat. Clim. Change 8, 229–233 (2018).

    ADS  Google Scholar 

  • 38.

    Green, L. & Jutfelt, F. Elevated carbon dioxide alters the plasma composition and behaviour of a shark. Biol. Lett. 10, 20140538 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Hamilton, T. J., Holcombe, A. & Tresguerres, M. CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning. Proc. R. Soc. B 281, 20132509 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Heuer, R. M., Welch, M. J., Rummer, J. L., Munday, P. L. & Grosell, M. Altered brain ion gradients following compensation for elevated CO2 are linked to behavioural alterations in a coral reef fish. Sci. Rep. 6, 33216 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Hurst, T. P. et al. Elevated CO2 alters behavior, growth, and lipid composition of Pacific cod larvae. Mar. Environ. Res. 145, 52–65 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Jiahuan, R. et al. Ocean acidification impairs foraging behavior by interfering with olfactory neural signal transduction in black sea bream, Acanthopagrus schlegelii. Front. Physiol. 9, 1592 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Jutfelt, F., Bresolin de Souza, K., Vuylsteke, A. & Sturve, J. Behavioural disturbances in a temperate fish exposed to sustained high-CO2 levels. PLoS ONE 8, e65825 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Lai, F., Jutfelt, F. & Nilsson, G. E. Altered neurotransmitter function in CO2-exposed stickleback (Gasterosteus aculeatus): a temperate model species for ocean acidification research. Conserv. Physiol. 3, cov018 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Laubenstein, T. D., Rummer, J. L., McCormick, M. I. & Munday, P. L. A negative correlation between behavioural and physiological performance under ocean acidification and warming. Sci. Rep. 9, 4265 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Lopes, A. F. et al. Behavioural lateralization and shoaling cohesion of fish larvae altered under ocean acidification. Mar. Biol. 163, 243 (2016).

    Google Scholar 

  • 47.

    Maulvault, A. L. et al. Differential behavioural responses to venlafaxine exposure route, warming and acidification in juvenile fish (Argyrosomus regius). Sci. Total Environ. 634, 1136–1147 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    McCormick, M. I., Watson, S.-A. & Munday, P. L. Ocean acidification reverses competition for space as habitats degrade. Sci. Rep. 3, 3280 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 49.

    Munday, P. L. et al. Selective mortality associated with variation in CO2 tolerance in a marine fish. Ocean Acidif. 1, 1–5 (2012).

    Google Scholar 

  • 50.

    Nadler, L. E., Killen, S. S., McCormick, M. I., Watson, S.-A. & Munday, P. L. Effect of elevated carbon dioxide on shoal familiarity and metabolism in a coral reef fish. Conserv. Physiol. 4, cow052 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Näslund, J., Lindstrom, E., Lai, F. & Jutfelt, F. Behavioural responses to simulated bird attacks in marine three-spined sticklebacks after exposure to high CO2 levels. Mar. Freshw. Res. 66, 877–885 (2015).

    Google Scholar 

  • 52.

    Ou, M. et al. Responses of pink salmon to CO2-induced aquatic acidification. Nat. Clim. Change 5, 950–955 (2015).

    ADS  CAS  Google Scholar 

  • 53.

    Paula, J. R. et al. Neurobiological and behavioural responses of cleaning mutualisms to ocean warming and acidification. Sci. Rep. 9, 12728 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Paula, J. R. et al. The past, present and future of cleaner fish cognitive performance as a function of CO2 levels. Biol. Lett. 15, 20190618 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Porteus, C. S. et al. Near-future CO2 levels impair the olfactory system of a marine fish. Nat. Clim. Change 8, 737–743 (2018).

    ADS  CAS  Google Scholar 

  • 56.

    Pistevos, J. C. A., Nagelkerken, I., Rossi, T., Olmos, M. & Connell, S. D. Ocean acidification and global warming impair shark hunting behaviour and growth. Sci. Rep. 5, 16293 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Regan, M. D. et al. Ambient CO2, fish behaviour and altered GABAergic neurotransmission: exploring the mechanism of CO2-altered behaviour by taking a hypercapnia dweller down to low CO2 levels. J. Exp. Biol. 219, 109–118 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 58.

    Rossi, T., Nagelkerken, I., Pistevos, J. C. A. & Connell, S. D. Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification. Biol. Lett. 12, 20150937 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 59.

    Rossi, T., Pistevos, J. C. A., Connell, S. D. & Nagelkerken, I. On the wrong track: ocean acidification attracts larval fish to irrelevant environmental cues. Sci. Rep. 8, 5840 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Schmidt, M. et al. Impact of ocean warming and acidification on the behaviour of two co-occurring gadid species, Boreogadus saida and Gadus morhua, from Svalbard. Mar. Ecol. Prog. Ser. 571, 183–191 (2017).

    ADS  CAS  Google Scholar 

  • 61.

    Schunter, C. et al. An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish. Nat. Ecol. Evol. 2, 334–342 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 62.

    Simpson, S. D. et al. Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol. Lett. 7, 917–920 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Sundin, J. & Jutfelt, F. 9–28 d of exposure to elevated pCO2 reduces avoidance of predator odour but had no effect on behavioural lateralization or swimming activity in a temperate wrasse (Ctenolabrus rupestris). ICES J. Mar. Sci. 73, 620–632 (2016).

    Google Scholar 

  • 64.

    Sundin, J. & Jutfelt, F. Effects of elevated carbon dioxide on male and female behavioural lateralization in a temperate goby. R. Soc. Open Sci. 5, 171550 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 65.

    Devine, B. M. & Munday, P. L. Habitat preferences of coral-associated fishes are altered by short-term exposure to elevated CO2. Mar. Biol. 160, 1955–1962 (2013).

    CAS  Google Scholar 

  • 66.

    Velez, Z., Roggatz, C. C., Benoit, D. M., Hardege, J. D. & Hubbard, P. C. Short- and medium-term exposure to ocean acidification reduces olfactory sensitivity in gilthead seabream. Front. Physiol. 10, 731 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 67.

    Williams, C. R. et al. Elevated CO2 impairs olfactory-mediated neural and behavioral responses and gene expression in ocean-phase coho salmon (Oncorhynchus kisutch). Glob. Change Biol. 25, 963–977 (2019).

    ADS  Google Scholar 


  • Source: Ecology - nature.com

    Deep learning-assisted comparative analysis of animal trajectories with DeepHL

    Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization