in

Microbial carrying capacity and carbon biomass of plastic marine debris

  • 1.

    Van Sebille E, Wilcox C, Lebreton L, Maximenko N, Hardesty BD, Van Franeker JA, et al. A global inventory of small floating plastic debris. Environ Res Lett. 2015;10:124006.

    Google Scholar 

  • 2.

    Reisser J, Shaw J, Hallegraeff G, Proietti M, Barnes DK, Thums M, et al. Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates. PLoS ONE. 2014;9:e100289.

    PubMed  PubMed Central  Google Scholar 

  • 3.

    Mincer TJ, Zettler ER, Amaral-Zettler LA. Biofilms on plastic debris and their influence on marine nutrient cycling, productivity, and hazardous chemical mobility. In: Rei Yamashita KT, Bee Geok Yeo, Hideshige Takada, Jan A. van Franeker, Megan Dalton, Eric Dale, editors. Hazardous chemicals associated with plastics in the marine environment. Springer: Cham; 2016. pp. 221–33.

  • 4.

    Morét-Ferguson S, Law KL, Proskurowski G, Murphy EK, Peacock EE, Reddy CM. The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar Pollut Bull. 2010;60:1873–8.

    PubMed  Google Scholar 

  • 5.

    Eriksen M, Lebreton LC, Carson HS, Thiel M, Moore CJ, Borerro JC, et al. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE. 2014;9:e111913.

    PubMed  PubMed Central  Google Scholar 

  • 6.

    Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol. 2013;47:7137–46.

    CAS  PubMed  Google Scholar 

  • 7.

    Amaral-Zettler LA, Zettler ER, Slikas B, Boyd GD, Melvin DW, Morrall CE, et al. The biogeography of the plastisphere: implications for policy. Front Ecol Environ. 2015;13:541–6.

    Google Scholar 

  • 8.

    De Tender CA, Devriese LI, Haegeman A, Maes S, Ruttink T, Dawyndt P. Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ Sci Technol. 2015;49:9629–38.

    PubMed  Google Scholar 

  • 9.

    De Tender CA, Schlundt C, Devriese LI, Mincer TJ, Zettler ER, Amaral-Zettler LA. A review of microscopy and comparative molecular-based methods to characterize “plastisphere” communities. Anal Methods. 2017;9:2132–43.

    Google Scholar 

  • 10.

    Gong W, Marchetti A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front Mar Sci. 2019;6:219.

    Google Scholar 

  • 11.

    Bonk F, Popp D, Harms H, Centler F. PCR-based quantification of taxa-specific abundances in microbial communities: quantifying and avoiding common pitfalls. J Microbiol Methods. 2018;153:139–47.

    CAS  PubMed  Google Scholar 

  • 12.

    Neu TR, Lawrence JR. Innovative techniques, sensors, and approaches for imaging biofilms at different scales. Trends Microbiol. 2015;23:233–42.

    CAS  PubMed  Google Scholar 

  • 13.

    Bochdansky AB, Clouse MA, Herndl GJ. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 2017;11:362–73.

    PubMed  Google Scholar 

  • 14.

    Schlundt C, Welch JLM, Knochel AM, Zettler ER, Amaral‐Zettler LA. Spatial structure in the “plastisphere”: molecular resources for imaging microscopic communities on plastic marine debris. Mol Ecol Resour. 2020;20:620–634.

    CAS  PubMed  Google Scholar 

  • 15.

    Bruinsma G, Van der Mei H, Busscher H. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials. 2001;22:3217–24.

    CAS  PubMed  Google Scholar 

  • 16.

    Ogonowski M, Motiei A, Ininbergs K, Hell E, Gerdes Z, Udekwu KI, et al. Evidence for selective bacterial community structuring on microplastics. Environ Microbiol. 2018;20:2796–808.

    CAS  PubMed  Google Scholar 

  • 17.

    Khachikyan A, Milucka J, Littmann S, Ahmerkamp S, Meador T, Könneke M, et al. Direct cell mass measurements expand the role of small microorganisms in nature. Appl Environ Microbiol. 2019;85:e00493–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Romanova N, Sazhin A. Relationships between the cell volume and the carbon content of bacteria. Oceanology. 2010;50:522–30.

    Google Scholar 

  • 19.

    Menden-Deuer S, Lessard EJ. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr. 2000;45:569–79.

    CAS  Google Scholar 

  • 20.

    Massana R, Logares R. Eukaryotic versus prokaryotic marine picoplankton ecology. Environ Microbiol. 2013;15:1254–61.

    PubMed  Google Scholar 

  • 21.

    Loferer-Krößbacher M, Klima J, Psenner R. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl Environ Microbiol. 1998;64:688–94.

    PubMed  PubMed Central  Google Scholar 

  • 22.

    Lee S, Fuhrman JA. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol. 1987;53:1298–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Erni-Cassola G, Zadjelovic V, Gibson MI, Christie-Oleza JA. Distribution of plastic polymer types in the marine environment; a meta-analysis. J Hazard Mater. 2019;369:691–8.

    CAS  PubMed  Google Scholar 

  • 24.

    Dudek KL, Cruz BN, Polidoro B, Neuer S. Microbial colonization of microplastics in the Caribbean Sea. Limnol Oceanogr Lett. 2020;5:5–17.

    Google Scholar 

  • 25.

    Carpenter EJ, Smith K. Plastics on the Sargasso Sea surface. Science. 1972;175:1240–1.

    CAS  PubMed  Google Scholar 

  • 26.

    Amaral-Zettler LA, Zettler ER, Mincer TJ. Ecology of the plastisphere. Nat Rev Microbiol. 2020;18:139–51.

    CAS  PubMed  Google Scholar 

  • 27.

    Patil JS, Anil AC. Biofilm diatom community structure: influence of temporal and substratum variability. Biofouling. 2005;21:189–206.

    CAS  PubMed  Google Scholar 

  • 28.

    Rummel CD, Jahnke A, Gorokhova E, Kühnel D, Schmitt-Jansen M. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Technol Lett. 2017;4:258–67.

    CAS  Google Scholar 

  • 29.

    Michels J, Stippkugel A, Lenz M, Wirtz K, Engel A. Rapid aggregation of biofilm-covered microplastics with marine biogenic particles. Proc R Soc B. 2018;285:20181203.

    PubMed  Google Scholar 

  • 30.

    Lobelle D, Cunliffe M. Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull. 2011;62:197–200.

    CAS  PubMed  Google Scholar 

  • 31.

    Mueller LN, de Brouwer JF, Almeida JS, Stal LJ, Xavier JB. Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP. BMC Ecol. 2006;6:1.

    PubMed  PubMed Central  Google Scholar 

  • 32.

    De Tender CA, Devriese LI, Haegeman A, Maes S, Vangeyte JR, Cattrijsse A, et al. Temporal dynamics of bacterial and fungal colonization on plastic debris in the North Sea. Environ Sci Technol. 2017;51:7350–60.

    PubMed  Google Scholar 

  • 33.

    Tetu SG, Sarker I, Schrameyer V, Pickford R, Elbourne LD, Moore LR, et al. Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean’s most abundant photosynthetic bacteria. Commun Biol. 2019;2:1–9.

    Google Scholar 

  • 34.

    Capolupo M, Sørensen L, Jayasena KDR, Booth AM, Fabbri E. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Res. 2020;169:115270.

    CAS  PubMed  Google Scholar 

  • 35.

    Vosshage AT, Neu TR, Gabel F. Plastic alters biofilm quality as food resource of the freshwater Gastropod Radix balthica. Environ Sci Technol. 2018;52:11387–93.

    CAS  PubMed  Google Scholar 

  • 36.

    Dussud C, Meistertzheim A, Conan P, Pujo-Pay M, George M, Fabre P, et al. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ Pollut. 2018;236:807–16.

    CAS  PubMed  Google Scholar 

  • 37.

    Armitage AR, Gonzalez VL, Fong P. Decoupling of nutrient and grazer impacts on a benthic estuarine diatom assemblage. Estuar Coast Shelf Sci. 2009;84:375–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Yokota K, Waterfield H, Hastings C, Davidson E, Kwietniewski E, Wells B. Finding the missing piece of the aquatic plastic pollution puzzle: interaction between primary producers and microplastics. Limnol Oceanogr Lett. 2017;2:91–104.

    Google Scholar 

  • 39.

    Oberbeckmann S, Kreikemeyer B, Labrenz M. Environmental factors support the formation of specific bacterial assemblages on microplastics. Front Microbiol. 2018;8:2709.

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Kirstein IV, Wichels A, Krohne G, Gerdts G. Mature biofilm communities on synthetic polymers in seawater-specific or general? Mar Environ Res. 2018;142:147–54.

    CAS  PubMed  Google Scholar 

  • 41.

    Kettner MT, Rojas‐Jimenez K, Oberbeckmann S, Labrenz M, Grossart HP. Microplastics alter composition of fungal communities in aquatic ecosystems. Environ Microbiol. 2017;19:4447–59.

    CAS  PubMed  Google Scholar 

  • 42.

    Kettner MT, Oberbeckmann S, Labrenz M, Grossart HP. The eukaryotic life on microplastics in brackish ecosystems. Front Microbiol. 2019;10:538.

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Bayoudh S, Othmane A, Bettaieb F, Bakhrouf A, Ouada HB, Ponsonnet L. Quantification of the adhesion free energy between bacteria and hydrophobic and hydrophilic substrata. Mater Sci Eng C. 2006;26:300–5.

    CAS  Google Scholar 

  • 44.

    Bendinger B, Rijnaarts HH, Altendorf K, Zehnder AJ. Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl Environ Microbiol. 1993;59:3973–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Thompson SE, Coates JC. Surface sensing and stress-signalling in Ulva and fouling diatoms–potential targets for antifouling: a review. Biofouling. 2017;33:410–32.

    PubMed  Google Scholar 

  • 46.

    Araya P, Chamy R, Mota M, Alves M. Biodegradability and toxicity of styrene in the anaerobic digestion process. Biotechnol Lett. 2000;22:1477–81.

    CAS  Google Scholar 

  • 47.

    Pinto M, Langer TM, Hüffer T, Hofmann T, Herndl GJ. The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS ONE. 2019;14:e0217165.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Datta MS, Sliwerska E, Gore J, Polz MF, Cordero OX. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat Commun. 2016;7:11965.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Zobell CE. The effect of solid surfaces upon bacterial activity. J Bacteriol. 1943;46:39–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Karl DM, Björkman KM, Dore JE, Fujieki L, Hebel DV, Houlihan T, et al. Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep Sea Res Part II: Topical Stud Oceanogr. 2001;48:1529–66.

    CAS  Google Scholar 

  • 51.

    Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res II. 2001;48:1405–47.

    CAS  Google Scholar 

  • 52.

    Flemming H-C, Wuertz S. Bacteria and Archaea on Earth and their abundance in biofilms. Nat Rev Microbiol. 2019;17:247.

    CAS  PubMed  Google Scholar 

  • 53.

    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci. 1998;95:6578–83.

    CAS  PubMed  Google Scholar 

  • 54.

    Bjørnsen PK. Automatic determination of bacterioplankton biomass by image analysis. Appl Environ Microbiol. 1986;51:1199–204.

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Bloem J, Veninga M, Shepherd J. Fully automatic determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser scanning microscopy and image analysis. Appl Environ Microbiol. 1995;61:926–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci. 2012;109:16213–6.

    CAS  PubMed  Google Scholar 

  • 57.

    Pernice MC, Forn I, Gomes A, Lara E, Alonso-Sáez L, Arrieta JM, et al. Global abundance of planktonic heterotrophic protists in the deep ocean. ISME J. 2015;9:782–92.

    CAS  PubMed  Google Scholar 

  • 58.

    Bölter M, Bloem J, Meiners K, Möller R. Enumeration and biovolume determination of microbial cells–a methodological review and recommendations for applications in ecological research. Biol Fertil Soils. 2002;36:249–59.

    Google Scholar 


  • Source: Ecology - nature.com

    American mastodon mitochondrial genomes suggest multiple dispersal events in response to Pleistocene climate oscillations

    Lessons from the Clean Air Car Race 50 years later