Reaction-diffusion modeling predicts short metabolic interaction distances in three-dimensional systems with a metabolite-sink
The basic ideas behind diffusion and the resulting concentration gradients are well-understood. To better understand the biological impact of these concentration gradients, we made reaction-diffusion models where concentration gradient profiles around a producer cell were calculated either in a cube to mimic a three-dimensional system, or in a thin plate to mimic a two-dimensional system (plate thickness of 1.1 µm, roughly matching the producer cell diameter of 1 µm, Fig. 1). In both cases the total volume was 1 nL (106 cells/mL). We used the diffusion coefficient of glucose as it is similar to that of other sugars, organic acids, and amino acids [30], compounds relevant in many metabolic interactions. Factors like viscosity, the presence of extracellular polymeric substances and the local cell concentration vary between environmental conditions, and affect the diffusion coefficient [30, 32]. To visualize their effect on concentration gradient profiles we modeled diffusion in conditions representing aqueous, biofilm, and colony environments (Table S2).
Glucose producing cells were placed in a two- or a three-dimensional space, in the presence and absence of a metabolite-sink. Different environments were simulated by altering the diffusion coefficient. The diffusion coefficient of glucose in water (Ds) was set to 6.7 × 10−10 [30], the diffusion coefficient of glucose in a biofilm (Deff,biofilm,s) was set to 0.25 times Ds [30], and the diffusion coefficient of glucose in a colony (Deff,colony,s) was set to 0.10 times Ds [29, 30] (Table S2). A time-dependent study in COMSOL Multiphysics yielded concentration gradients at several moments. The figure shows the concentration over a horizontal line crossing the producer cell, after 5 h of incubation. To aid visibility the x-axis-range was made similar for both plots, so for the two-dimensional system only part of the concentration gradient profile is shown. The dashed horizontal line indicates a concentration of 10 µM.
In simulations without a metabolite-sink the produced glucose accumulated (Fig. 1). After 5 h the minimal glucose concentration was around 1500 µM in both two- and three-dimensional systems (Fig. 1, Table S2), indicating that glucose is biologically available (i.e. above the threshold for growth based on transporter affinities) in the whole system. The introduction of a metabolite-sink limited the glucose accumulation, resulting in concentrations close to 0 µM. In the aqueous two-dimensional system the glucose concentration dropped below a threshold of 10 µM (approximate threshold for growth based on transporter affinities) at a distance of 269 µm from the producer, while in a three-dimensional system this threshold was already reached at 0.7 µm. A decrease in the diffusion coefficient increased the distance at which the glucose concentration dropped below 10 µM, but predicted distances were still in the low µm-range (<7.5 µm, Fig. 1, Table S2).
Together these results indicate that in three-dimensional systems with a metabolite-sink metabolic interaction distances might be reduced to around the size of single cells.
Design of a synthetic consortium and three-dimensional spatial structure for growth
To predict how glucose concentration gradients constrain interactions between micro-organisms in a three-dimensional environment, we extended the cubic model to contain producer and receiver cells (Supplementary information section 4.1 and 4.2, Fig. S6 and Table S1), and analyzed the impact of cell-to-cell distance on the interaction. To experimentally validate the model results we constructed synthetic consortia using four L. lactis strains. (1) A “producer” that takes up lactose and hydrolyzes it intracellularly to glucose and galactose. It was engineered to not metabolize glucose, which was therefore secreted while the cells grew on galactose. (2) A GFP-expressing “receiver” that can take up and grow on glucose, but not lactose. As receivers can only grow on glucose, their growth is indicative for the glucose availability at their position. (3) A “non-producer” that takes up lactose. It uses both the glucose and galactose moiety for growth, and therefore does not secrete glucose. (4) A “competing glucose-consumer” (Fig. 2A). To co-culture these cells in a three-dimensional system, glucose-producers and -receivers (the unidirectional cross-feeders) were encapsulated in solidified agarose beads with an average diameter of 40 µm. L. lactis was chosen because compared to other model organisms (e.g. Escherichia coli, S. cerevisiae) its metabolism and biomass yield are not sensitive to variations in oxygen and it can reach high cell concentrations inside these agarose beads. For negative controls glucose-producers were replaced by glucose-“non-producers”. Cells were embedded in the beads either as separate cells (on average 15 µm between cells, Supplementary information section 1, Fig. S2) or as aggregates (0 µm between cells, Fig. 2B). During incubation agarose beads were separated either by oil or by CDM (Fig. 2C). Separation by oil prevented diffusion of glucose from beads and therefore each agarose bead acted as an individual compartment. This enabled us to validate if cells could grow and interact in agarose beads. Separation by CDM resulted in glucose diffusion from beads, enabling us to study unidirectional cross-feeding in the presence of a concentration gradient in a three-dimensional system. To investigate the effect of metabolite-removal on the interaction distances, interactions were analyzed in the presence and absence of competing glucose-consumers outside the beads (Fig. 2C).
A The four L. lactis strains that were used to make synthetic consortia: (1) “producers” which take up lactose and secrete glucose, (2) “receivers” which take up glucose and express GFP, (3) “non-producers” which take up lactose but do not secrete glucose and (4) “competing glucose-consumers” which take up glucose (Supplementary information section 2, Fig. S3). B The three-dimensional spatial structure within agarose beads. A distance of 15 µm between cells is comparable to a homogeneous distribution of 3 × 108 bacteria/mL (Fig. S2). The microscopy image shows an aggregate where for visibility reasons a GFP-expressing cell is surrounded by nonfluorescent cells. Aggregates used in experiments were formed oppositely: a (non-)producer cell was surrounded by GFP-expressing receivers. C The three-dimensional spatial structure between agarose beads. Aggregates were only incubated in the presence of competing glucose-consumers.
Producer and receiver cells can grow and interact within agarose beads
To analyze if we could detect growth in agarose beads, we cultured producers and receivers in beads surrounded by medium with glucose or lactose. We analyzed the beads before and after incubation using flow cytometry. When cells were incubated in the presence of a carbon source they could not use, the forward scatter before and after incubation was similar (Fig. S5). However, after incubation in the presence of a carbon source on which cells could grow the forward scatter was increased significantly, and we could separate beads with and beads without growth from each other using a forward scatter threshold (Figs. S4 and S5). To subsequently analyze if only producer cells, only receiver cells or both were grown, we calculated the average fluorescence of the grown cells (Supplementary information section 3, Fig. S4). As the population of grown cells can consist of only producer cells, only fluorescent receiver cells, or both, we expect the average fluorescence of the grown cells to scale with the receiver cell fraction within the population of grown cells. Consistent with this expectation the average fluorescence of the grown cells was low for beads with producers and high for beads with GFP-expressing receivers (Fig. 3B2). Together these results show that using the forward scatter signal we can detect in which percentage of the beads cells could grow, and using the average fluorescence of the grown cells we can detect which cell-types were grown within these beads.
A, C, and E show the predicted concentration gradient at the diagonal of the cube, for the following spatial structure: A no diffusion from beads, C diffusion from beads, 15 µm between cells within a bead, and E diffusion from beads, aggregated cells within a bead. For each condition the glucose uptake (mol/s) after 5 h of incubation was calculated, without considering growth of the cells. Bar plots show the glucose consumption rate (mol/s) in bead 1 (bead without producer cell) and bead 2 (bead with producer cell). Dashed lines indicate the glucose production rate (mol/s) of producer cells, which is equal in all conditions. Produced glucose that is not consumed in bead 1 or bead 2 is consumed by the competing glucose-consumers. In B, D, and F the experimental results are shown for these different spatial structures. Details about the gating strategy are given in Supplementary information section 3, Figs. S4 and S5. Density plots B1, D1, D3, and F1 show the populations that were gated as “growth” in the producer–receiver co-cultures (n = 3, around 3000 agarose beads measured per replicate). Density plots B2, D2, D4, and F2 show the average fluorescence of the grown cells (n = 3). This average fluorescence scales with the receiver cell fraction, as shown by the control samples that are added in the same plot: receivers only, producers only, and co-cultures of non-producers and receivers (n = 3 for each of them). The non-producers and receivers and the producers only controls are overlapping in all plots. The schematic drawing at the right summarizes the results from the presented density plots.
To compare growth in agarose beads with growth in liquid medium, we estimated the number of receivers in a fully grown agarose bead by dividing the total fluorescence of an agarose bead by the fluorescence of single receiver cells. These measurements indicated a cell concentration of 7.8 × 108 ± 0.7 × 108 cells/mL in fully grown agarose beads, which is similar to what is reached in liquid medium with the same glucose concentration (7.4 × 108 cells/mL). These results show that the compartmentalization method and the incubation conditions do not affect the biomass yield of receiver cells.
To validate that cells could not only grow, but also interact within agarose beads, we made beads with producer and receiver cells. Producer cells could always grow, while receivers could only grow when glucose secreted by producers was available to them (Fig. 2A). Based on the chosen droplet loading all beads contained receiver cells and ~21% of them also contained a producer cell. The results show that after incubation 14 ± 1% of the agarose beads showed an increased forward scatter, indicating growth (Fig. 3B1, Table 2). As this is close to 21%, this indicates that there was only growth in beads containing producers and receivers. Within these beads the grown cells had a high average fluorescence (Fig. 3B2), indicating that receiver cells grew on glucose provided by producer cells. Negative controls with non-producers instead of producer cells showed growth of non-producer cells only (low average fluorescence of the grown cells, Fig. 3B2, Table 2), confirming cross-feeding between producer and receiver cells.
Altogether this setup forms a synthetic consortium where spatial interactions can be manipulated in a three-dimensional environment, and which allows the detection of growth and interactions using flow cytometry. It furthermore shows that when surrounded by oil, receiver cells only grow when localized in beads with producer cells.
Under glucose competition receivers cannot interact with producers that are on average 15 µm away
In the example above glucose could not diffuse from beads and each agarose bead acted as an individual compartment. In contrast, when glucose can diffuse from agarose beads the model predicted that the glucose concentration flattens close to the producer. In that case receivers at a distance of 15 µm from a producer in the same bead are exposed to similar glucose concentrations as receivers in beads without a producer (Fig. 3C). When the producer and receiver cells are randomly distributed within the agarose beads, the glucose uptake of receivers might change depending on their positioning. However, in almost 60% of the simulated configurations the glucose uptake changed less than twofold compared to the default positioning from Fig. 2B, and in over 90% the change was less than fourfold (Fig. S9). To reduce the computational time, we used the default positioning in subsequent simulations.
If the model prediction that all receivers see similar glucose concentrations is correct, we expect that most receivers can grow when the global glucose concentration builds up (Fig. 1, Table S2). However, in case of glucose competition the glucose concentration is expected to stay low and even receivers 15 µm away from a producer in the same bead should not be able to grow. To test these predictions we incubated agarose beads in CDM, which allows glucose diffusion from beads. Without competing glucose-consumers in the medium outside the beads 75 ± 7% of the beads showed growth and the average fluorescence of the grown cells was high (Fig. 3D1, D2 and Table 2). The percentage of beads showing growth is higher than the percentage of beads containing a producer cell (around 21%), indicating growth of both receivers with and receivers without a producer in their bead. When we took the same beads but added competing glucose-consumers outside the beads, only 15 ± 3% of the beads showed growth. Within these beads the average fluorescence of the grown cells was low, indicating that only producers grew (Fig. 3D3, D4 and Table 2). These results are consistent with the model predictions (Figs. 3C and S9), and show that under glucose competition even microcolonies of producers cannot sustain growth of receivers that are on average 15 µm away.
Without competing glucose-consumers still 25 ± 7% of the beads were gated as “no growth”, although the model predicted that all receivers could grow (Fig. 3C, D1). These beads could be false negatives caused by our stringent gating strategy (Supplementary information section 3, Figs. S4 and S5), or by empty beads with single fluorescent cells attached to their outside.
For the beads gated as “growth”, we observed an increased average fluorescence compared to the single receiver controls (Fig. 3D2). It is known that fluorescence of individual cells increases with decreasing growth rate [33, 34], suggesting that in co-cultures the higher average fluorescence could be caused by glucose limited and therefore slower growth of the receivers in the beads.
Together the data show that competition for glucose in a three-dimensional environment prevents interactions of cells that are on average 15 µm apart, because the presence of competing public good-consumers leads to steep concentration gradients.
Aggregated producers and receivers interact even under glucose competition
In the presence of steep concentration gradients microbial interactions might be facilitated by bringing producers and receivers into close proximity. Consistently, the model predicted that cell aggregation would allow receivers to grow under glucose competition (Fig. 3E). We developed a protocol to make producer–receiver aggregates. Defined aggregates were formed by adding positively charged producers to an excess of negatively charged receivers, ensuring that producers were directly surrounded by receivers. In this way we obtained a mixture of single receivers and aggregates of one producer with approximately eight receivers attached to its surface (Fig. 2B). We roughly estimated the aggregate concentration in the mixture based on the added amount of positively charged producer-cells. These aggregates were subsequently encapsulated in agarose beads following a Poisson distribution, with the aim to add an aggregate to at most 21% of the beads. The actual percentage of beads containing a viable aggregate is likely lower, as not all producers remain viable, and as some aggregates contain multiple producer cells due to clumping. However, underestimating the percentage of beads with a viable aggregate would not affect the results, as we only analyze agarose beads with growth after incubation (Supplementary information section 3, Figs. S4 and S5).
We incubated the formed agarose beads in CDM with competing glucose-consumers. After incubation we saw an increased scatter in 3 ± 2% of the beads (Fig. 3F1, Table 2), indicating only growth in beads with both producers and receivers. Within these beads the average fluorescence of the grown cells was increased compared to the producer mono-culture (Fig. 3F2), indicating growth of both producers and receivers. Negative controls with non-producers and receivers showed an average fluorescence similar to the producer mono-culture, indicating growth of producer cells only (Fig. 3F2). We did not include samples without competing glucose-consumers, as Fig. 2 shows that all receivers will grow in these conditions.
Overall, the results show that close proximity through cell aggregation facilitates microbial interactions, even in a three-dimensional system with competition for the public good.
Aggregation results in dense microcolonies, facilitating growth of receivers with low affinity and low Vmax glucose transporters
Glucose uptake can be affected by cellular properties and environmental conditions. Consistent with Fig. 1, the model predicts that decreasing the diffusion coefficient has limited effect on the glucose uptake of receiver cells that are either 0 or 15 µm away from producer cells (Fig. S11). The model furthermore predicts that increasing the glucose production rate increases the interaction distance, but interactions are still limited to the low µm-range (Fig. S9). As in the presence of a glucose-sink the glucose concentration is low, we expected that the glucose affinity (Km) and maximal glucose uptake rate (Vmax) of receiver cells would affect the efficiency of interactions. This effect could however be counteracted by receiver-independent growth of producers, which increases the glucose production rate and therefore the local glucose concentration (Fig. S9), resulting in a similar glucose uptake of the different mutant-receivers. To study the effect of changes in qsmax in more detail, we modeled producer–receiver aggregates with receivers that contained one of the three different glucose transporter types of L. lactis—PTSman, PTScel, and GlcU, which are characterized in detail by Castro et al. [23] (Supplementary information section 4.5). Within aggregates the effective diffusion coefficient (Deff,s) is described to be 10–70% of the diffusion coefficient in water (Ds), depending on the aggregates’ density [29, 30]. When we assume the presence of 50 producer cells and set Deff,s to 10% of Ds, the model predicts that receivers with the low Km and high Vmax transporter PTSman (Km = 0.013 mM, Vmax = 0.22 µmol/min/mg protein [23]) consume about 15 times more glucose than receivers with a high Km or low Vmax transporter (PTScel: Km = 8.7 mM, Vmax = 0.25 µmol/min/mg protein, GlcU: Km = 2.4 mM, Vmax = 0.08 µmol/min/mg protein [23]) (Supplementary information section 4.5, Fig. S10). When Deff,s is 70% of Ds, this difference is around 70-fold.
To validate the model results, we constitutively expressed GFP in engineered L. lactis strains which each contained only one of the three glucose transporters PTSman, PTScel, or GlcU [35]. We subsequently analyzed if their glucose uptake was high enough to interact with producers. The experimental results show that in mono-culture controls the average fluorescence of the grown cells decreased with an increasing growth rate (Fig. 4 and Supplementary information section 5, Table S3), an effect that we saw before. When producers and receivers were on average 15 µm away from each other, the mutant-receivers show similar behavior as the wild-type-receiver: in the absence of competing glucose-consumers receivers grew independently of their distance from a producer cell, while in the presence of competing glucose-consumers producers could not sustain growth of receivers (Figs. 4b and S12). Fig. 4 further shows that in producer–receiver aggregates even the low-affinity receivers could grow. These results are consistent with the model prediction that at a high glucose production rate qp and with the formation of dense microcolonies with a low Deff,s the glucose uptake of the different mutant-receivers is high (Fig. S10). Aggregates with receivers containing the low Km and high Vmax transporter PTSman showed the highest average fluorescence of the grown cells. This finding is consistent with the model predictions that receivers containing PTSman have the highest glucose uptake rate.
Mono- and co-cultures of (non-)producers and receivers with different glucose transporter types were incubated in agarose beads surrounded by CDM. Receivers are ordered based on their growth rate (Supplementary information section 5, Table S3). L. lactis NZ9000_ PTSman has a Km of 0.013 mM and a Vmax of 0.22 µmol/min/mg protein, L. lactis NZ9000_ PTScel has a Km of 8.7 mM and a Vmax of 0.25 µmol/min/mg protein, and L. lactis NZ9000_ GlcU has a Km of 2.4 mM and a Vmax of 0.08 µmol/min/mg protein [23] (Supplementary information section 4.5). A Producer mono-cultures were incubated in the presence of lactose, receiver mono-cultures in the presence of glucose. In producer mono-cultures agarose beads contained separated cells. B Co-cultures were incubated in the presence of lactose. Agarose beads contained either separated cells (on average 15 µm between cells within a bead), or producer–receiver aggregates (0 µm between cells). The beads were incubated in CDM with and without competing glucose-consumers. For each culture the median and standard error of the average fluorescence of the grown cells is shown (n = 3). Corresponding density plots are shown in Supplementary information section 6, Fig. S12.
Altogether the data show that in a three-dimensional system with a metabolite consuming sink a steep concentration gradient is obtained, and cells that are on average 15 µm away from each other cannot interact through glucose cross-feeding. This physical constraint can be overcome by bringing cells together in the low µm-range, as achieved through cell aggregation—physical contact.
Source: Ecology - nature.com
 
