in

Microbial growth and carbon use efficiency show seasonal responses in a multifactorial climate change experiment

  • 1.

    Soong, J. L. et al. Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling. Glob. Chang. Biol. 00, 1–9 (2020).

    Google Scholar 

  • 2.

    Liang, C. & Balser, T. C. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat. Rev. Microbiol. 9, 75 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Miltner, A., Bombach, P., Schmidt-Brücken, B. & Kästner, M. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111, 41–55 (2012).

    CAS  Article  Google Scholar 

  • 4.

    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).

    CAS  Article  Google Scholar 

  • 5.

    Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Ågren, G. I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. N. Phytol. 196, 79–91 (2012).

    CAS  Article  Google Scholar 

  • 6.

    Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L. & Richter, A. Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling. Ecol. Lett. 16, 930–939 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Allison, S. D. Modeling adaptation of carbon use efficiency in microbial communities. Front. Microbiol. 5, 1–9 (2014).

    Google Scholar 

  • 8.

    Geyer, K. M., Kyker-Snowman, E., Grandy, A. S. & Frey, S. D. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127, 173–188 (2016).

    CAS  Article  Google Scholar 

  • 9.

    Hagerty, S. B., Allison, S. D. & Schimel, J. P. Evaluating soil microbial carbon use efficiency explicitly as a function of cellular processes: implications for measurements and models. Biogeochemistry 140, 269–283 (2018).

    CAS  Article  Google Scholar 

  • 10.

    Manzoni, S., Schimel, J. P. & Porporato, A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93, 930–938 (2011).

    Article  Google Scholar 

  • 11.

    Williams, M. A. & Rice, C. W. Seven years of enhanced water availability influences the physiological, structural, and functional attributes of a soil microbial community. Appl. Soil Ecol. 35, 535–545 (2007).

    Article  Google Scholar 

  • 12.

    Zheng, Q. et al. Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biol. Biochem. 128, 45–55 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Pritchard, S. G. Soil organisms and global climate change. Plant Pathol. 60, 82–99 (2011).

    Article  Google Scholar 

  • 14.

    Classen, A. E. T. et al. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere 6, 1–21 (2015).

    Article  Google Scholar 

  • 15.

    IPCC. Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013).

  • 16.

    Dieleman, W. I. J. et al. Simple additive effects are rare: A quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob. Chang. Biol. 18, 2681–2693 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Yue, K. et al. Influence of multiple global change drivers on terrestrial carbon storage: additive effects are common. Ecol. Lett. 20, 663–672 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Le Quéré, C. et al. Global Carbon Budget 2018. Earth Syst. Sci. Data Discuss. 10, 2141–2194 (2018).

    Article  Google Scholar 

  • 20.

    Bloom, A. A., Exbrayat, J. F., Van Der Velde, I. R., Feng, L. & Williams, M. The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times. Proc. Natl Acad. Sci. USA 113, 1285–1290 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Alster, C. J., Baas, P., Wallenstein, M. D., Johnson, N. G. & von Fischer, J. C. Temperature sensitivity as a microbial trait using parameters from macromolecular rate theory. Front. Microbiol. 7, 1–10 (2016).

    Article  Google Scholar 

  • 22.

    Bradford, M. A. Thermal adaptation of decomposer communities in warming soils. Front. Microbiol. 4, 1–16 (2013).

    Article  Google Scholar 

  • 23.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Bárcenas-Moreno, G., Gómez-Brandón, M., Rousk, J. & Bååth, E. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob. Chang. Biol. 15, 2950–2957 (2009).

    Article  Google Scholar 

  • 25.

    Fenner, N., Freeman, C. & Reynolds, B. Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes; implications for the global carbon cycle and soil enzyme methodologies. Soil Biol. Biochem. 37, 1814–1821 (2005).

    CAS  Article  Google Scholar 

  • 26.

    Schimel Balser, T. C. & Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88, 1386–1394 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Schimel. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).

    Article  Google Scholar 

  • 28.

    Bardgett, R. D., Freeman, C. & Ostle, N. J. Microbial contributions to climate change through carbon cycle feedbacks. ISME J. 2, 805–814 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Andresen, L. C. et al. Biomass responses in a temperate European grassland through 17 years of elevated CO2. Glob. Chang. Biol. 24, 3875–3885 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Parvin, S. et al. Free air CO2 enrichment (FACE) improves water use efficiency and moderates drought effect on N2 fixation of Pisum sativum L. Plant Soil 436, 587–606 (2019).

    CAS  Article  Google Scholar 

  • 31.

    Yuhui, W. et al. Effects of elevated CO2 and drought on plant physiology, soil carbon and soil enzyme activities. Pedosphere 27, 846–855 (2017).

    Article  Google Scholar 

  • 32.

    Eisenhauer, N., Cesarz, S., Koller, R., Worm, K. & Reich, P. B. Global change belowground: Impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Glob. Chang. Biol. 18, 435–447 (2012).

    Article  Google Scholar 

  • 33.

    Nie, M., Lu, M., Bell, J., Raut, S. & Pendall, E. Altered root traits due to elevated CO2: A meta-analysis. Glob. Ecol. Biogeogr. 22, 1095–1105 (2013).

    Article  Google Scholar 

  • 34.

    Tucker, C. L., Bell, J., Pendall, E. & Ogle, K. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Glob. Chang. Biol. 19, 252–263 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Kuzyakov, Y., Horwath, W. R., Dorodnikov, M. & Blagodatskaya, E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles. Soil Biol. Biochem. 128, 66–78 (2019).

    CAS  Article  Google Scholar 

  • 36.

    Wan, S., Norby, R. J., Ledford, J. & Weltzin, J. F. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Glob. Chang. Biol. 13, 2411–2424 (2007).

    Article  Google Scholar 

  • 37.

    Madhu, M. & Hatfeld, J. L. Dynamics of plant root growth under increased atmospheric carbon dioxide. Agron. J. 105, 657–669 (2013).

    CAS  Article  Google Scholar 

  • 38.

    Roy, J. et al. Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme. Proc. Natl Acad. Sci. U.S.A 113, 6224–6229 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Chang. 8, 885–889 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Hagerty, S. B. et al. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat. Clim. Chang. 4, 903–906 (2014).

    CAS  Article  Google Scholar 

  • 41.

    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).

    CAS  Article  Google Scholar 

  • 42.

    Lehmeier, C. A., Ballantyne, F. IV, Min, K. & Billings, S. A. Temperature-mediated changes in microbial carbon use efficiency and 13C discrimination. Biogeosciences 13, 3319–3329 (2016).

    CAS  Article  Google Scholar 

  • 43.

    Fuchslueger, L. et al. Microbial carbon and nitrogen cycling responses to drought and temperature in differently managed mountain grasslands. Soil Biol. Biochem. 135, 144–153 (2019).

    CAS  Article  Google Scholar 

  • 44.

    Alvarez, G. et al. Catalytic power of enzymes decreases with temperature: New insights for understanding soil C cycling and microbial ecology under warming. Glob. Chang. Biol. 24, 4238–4250 (2018).

    PubMed  Article  Google Scholar 

  • 45.

    Dijkstra, P. et al. Effect of temperature on metabolic activity of intact microbial communities: Evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biol. Biochem. 43, 2023–2031 (2011).

    CAS  Article  Google Scholar 

  • 46.

    Manzoni, S. et al. Reviews and syntheses: Carbon use efficiency from organisms to ecosystems – Definitions, theories, and empirical evidence. Biogeosciences 15, 5929–5949 (2018).

    CAS  Article  Google Scholar 

  • 47.

    Schmidt, S. K. et al. Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology 88, 1379–1385 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Blume, E. et al. Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl. Soil Ecol. 20, 171–181 (2002).

    Article  Google Scholar 

  • 49.

    Regan, K. M. et al. Seasonal controls on grassland microbial biogeography: Are they governed by plants, abiotic properties or both? Soil Biol. Biochem. 71, 21–30 (2014).

    CAS  Article  Google Scholar 

  • 50.

    Piepho Herndl, M., Pötsch, E. M. & Bahn, M. Designing an experiment with quantitative treatment factors to study the effects of climate change. J. Agron. Crop Sci. 203, 584–592 (2017).

    Article  CAS  Google Scholar 

  • 51.

    Liu, Y. et al. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biol. Biochem. 121, 35–42 (2018).

    CAS  Article  Google Scholar 

  • 52.

    Rustad, L. E. et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543–562 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Schwarz, B. et al. Warming alters energetic structure and function but not resilience of soil food webs. Nat. Clim. Chang. 7, 895–900 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Hartley, I. P., Heinemeyer, A. & Ineson, P. Effects of three years of soil warming and shading on the rate of soil respiration: Substrate availability and not thermal acclimation mediates observed response. Glob. Chang. Biol. 13, 1761–1770 (2007).

    Article  Google Scholar 

  • 55.

    Drigo, B., Kowalchuk, G. A. & van Veen, J. A. Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol. Fertil. Soils 44, 667–679 (2008).

    Article  Google Scholar 

  • 56.

    Kowalchuk, G. A. et al. Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics. Glob. Chang. Biol. 19, 621–636 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Luo, Y., Hui, D. & Zhang, D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology 87, 53–63 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Pausch, J. & Kuzyakov, Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob. Chang. Biol. 24, 1–12 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Carrillo, Y., Dijkstra, F., LeCain, D., Blumenthal, D. & Pendall, E. Elevated CO2 and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria. Ecol. Lett. 21, 1639–1648 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Adair, K. L. et al. Above and belowground community strategies respond to different global change drivers. Sci. Rep. 9, 1–11 (2019).

    CAS  Article  Google Scholar 

  • 61.

    Deltedesco, E. et al. Trace gas fluxes from managed grassland soil subject to multifactorial climate change manipulation. Appl. Soil Ecol. 137, 1–11 (2019).

    Article  Google Scholar 

  • 62.

    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).

    CAS  Article  Google Scholar 

  • 63.

    Spohn, M., Klaus, K., Wanek, W. & Richter, A. Microbial carbon use efficiency and biomass turnover times depending on soil depth – Implications for carbon cycling. Soil Biol. Biochem. 96, 74–81 (2016).

    CAS  Article  Google Scholar 

  • 64.

    Pinheiro, J., Bates, D., Debroy, S., Sarkar, D. & R-core Team. nlme: linear and nonlinear mixed effects models. R package version 3 (2019).

  • 65.

    Galecki, A. & Burzykowski, T. Linear Mixed Effects Models Using R.: A Step-by-Step Approach. https://doi.org/10.1007/978-1-4614-3900-4 (2013).

  • 66.

    Piepho, H. P. & Edmondson, R. N. A tutorial on the statistical analysis of factorial experiments with qualitative and quantitative treatment factor levels. J. Agron. Crop Sci. 204, 429–455 (2018).

    Article  Google Scholar 

  • 67.

    Box, G. E. P. & Jenkins, G. M. Time Series Analysis: Forecasting and Control. (Holden-Day, San Francisco, CA, US, 1976).

  • 68.

    Finerty, J. P. The Population Ecology of Cycles in Small Mammals. (Yale University Press, New Haven and London, UK, 1980).

  • 69.

    Nisbet, R. M. & Gurney, W. S. C. Modelling Fluctuating Populations. (John Wiley & Sons, New York, US, 1982).

  • 70.

    Turchin, P. & Taylor, D. Complex dynamics in ecological time series. Ecology 73, 289–305 (1992).

    Article  Google Scholar 

  • 71.

    Davies, N. & Chatfield, C. The Analysis of Time Series: An Introduction. The Mathematical Gazette vol. 74 (Chapman and Hall, 2007).

  • 72.

    Kozak, M. & Piepho, H. P. What’s normal anyway? Residual plots are more telling than significance tests when checking ANOVA assumptions. J. Agron. Crop Sci. 204, 86–98 (2018).

    Article  Google Scholar 

  • 73.

    Lenth, R. V. Response-surface methods in R, using rsm. J. Stat. Softw. 32, 1–21 (2010).


  • Source: Ecology - nature.com

    Georgina Mace (1953–2020)

    Designing off-grid refrigeration technologies for crop storage in Kenya