in

Microclimatic effects on alpine plant communities and flower-visitor interactions

  • 1.

    Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nature Climate Change 5, 424 (2015).

  • 2.

    Jurasinski, G. & Kreyling, J. Upward shift of alpine plants increases floristic similarity of mountain summits. Journal of Vegetation Science 18, 711–718 (2007).

    • Article
    • Google Scholar
  • 3.

    Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change 2, 619 (2012).

  • 4.

    Alexander, J. M. et al. Lags in the response of mountain plant communities to climate change. Global Change Biol 24, 563–579 (2018).

  • 5.

    Graae, B. J. et al. Stay or go–how topographic complexity influences alpine plant population and community responses to climate change. Perspectives in Plant Ecology, Evolution and Systematics 30, 41–50 (2018).

    • Article
    • Google Scholar
  • 6.

    Löffler, J. & Pape, R. Diversity patterns in relation to the environment in alpine tundra ecosystems of northern Norway. Arctic, Antarctic, and Alpine Research 40, 373–381 (2008).

    • Article
    • Google Scholar
  • 7.

    Pauli, H. et al. Recent plant diversity changes on Europe’s mountain summits. Science 336, 353–355 (2012).

  • 8.

    Spasojevic, M. J., Bowman, W. D., Humphries, H. C., Seastedt, T. R. & Suding, K. N. Changes in alpine vegetation over 21 years: are patterns across a heterogeneous landscape consistent with predictions? Ecosphere 4, 1–18 (2013).

    • Article
    • Google Scholar
  • 9.

    Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).

  • 10.

    Ebeling, A., Klein, A. M., Schumacher, J., Weisser, W. W. & Tscharntke, T. How does plant richness affect pollinator richness and temporal stability of flower visits? Oikos 117, 1808–1815 (2008).

    • Article
    • Google Scholar
  • 11.

    Junker, R. R. et al. Specialization on traits as basis for the niche‐breadth of flower visitors and as structuring mechanism of ecological networks. Functional Ecology 27, 329–341 (2013).

    • Article
    • Google Scholar
  • 12.

    Junker, R. R., Blüthgen, N. & Keller, A. Functional and phylogenetic diversity of plant communities differently affect the structure of flower-visitor interactions and reveal convergences in floral traits. Evolutionary Ecology 29, 437–450 (2015).

    • Article
    • Google Scholar
  • 13.

    Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L. & Totland, Ø. How does climate warming affect plant‐pollinator interactions? Ecology letters 12, 184–195 (2009).

  • 14.

    Hoiss, B., Krauss, J. & Steffan‐Dewenter, I. Interactive effects of elevation, species richness and extreme climatic events on plant–pollinator networks. Global Change Biol 21, 4086–4097 (2015).

  • 15.

    Dunne, J. A., Harte, J. & Taylor, K. J. Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecological Monographs 73, 69–86 (2003).

    • Article
    • Google Scholar
  • 16.

    Cavieres, L. A. et al. Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecology Letters 17, 193–202 (2014).

  • 17.

    Mayor, J. R. et al. Elevation alters ecosystem properties across temperate treelines globally. Nature 542, 91 (2017).

  • 18.

    Opedal, Ø. H., Armbruster, W. S. & Graae, B. J. Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecology & Diversity 8, 305–315 (2015).

    • Article
    • Google Scholar
  • 19.

    Junker, R. R., Lechleitner, M. H., Kuppler, J. & Ohler, L.-M. Interconnectedness of the Grinellian and Eltonian niche in regional and local plant-pollinator communities. Frontiers in Plant Science 10, 1371 (2019).

  • 20.

    Conti, L., de Bello, F., Lepš, J., Acosta, A. T. R. & Carboni, M. Environmental gradients and micro‐heterogeneity shape fine‐scale plant community assembly on coastal dunes. Journal of Vegetation Science 28, 762–773 (2017).

    • Article
    • Google Scholar
  • 21.

    Scherrer, D. & Körner, C. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biol 16, 2602–2613, https://doi.org/10.1111/j.1365-2486.2009.02122.x (2010).

    • Article
    • Google Scholar
  • 22.

    Lembrechts, J. J. et al. Microclimate variability in alpine ecosystems as stepping stones for non‐native plant establishment above their current elevational limit. Ecography 41, 900–909 (2018).

    • Article
    • Google Scholar
  • 23.

    Arft, A. et al. Responses of tundra plants to experimental warming: Meta‐analysis of the international tundra experiment. Ecological Monographs 69, 491–511 (1999).

    • Google Scholar
  • 24.

    Körner, C. Alpine plant life: functional plant ecology of high mountain ecosystems; with 47 tables. (Springer Science & Business Media, 2003).

  • 25.

    Wundram, D., Pape, R. & Löffler, J. Alpine soil temperature variability at multiple scales. Arctic, Antarctic, and Alpine Research 42, 117–128 (2010).

    • Article
    • Google Scholar
  • 26.

    Blonder, B. et al. Microenvironment and functional‐trait context dependence predict alpine plant community dynamics. Journal of Ecology 106, 1323–1337 (2018).

    • Article
    • Google Scholar
  • 27.

    Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D. & Coomes, D. Advances in microclimate ecology arising from remote sensing. Trends in Ecology & Evolution (2019).

  • 28.

    Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends in Ecology & Evolution 22, 357–365 (2007).

    • Article
    • Google Scholar
  • 29.

    Hülber, K., Winkler, M. & Grabherr, G. Intraseasonal climate and habitat‐specific variability controls the flowering phenology of high alpine plant species. Functional Ecology 24, 245–252 (2010).

    • Article
    • Google Scholar
  • 30.

    Jackson, M. T. Effects of microclimate on spring flowering phenology. Ecology 47, 407–415 (1966).

    • Article
    • Google Scholar
  • 31.

    Inouye, D. W. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89, 353–362 (2008).

  • 32.

    Carbognani, M., Bernareggi, G., Perucco, F., Tomaselli, M. & Petraglia, A. Micro-climatic controls and warming effects on flowering time in alpine snowbeds. Oecologia 182, 573–585 (2016).

  • 33.

    Schöb, C., Kammer, P. M., Choler, P. & Veit, H. Small-scale plant species distribution in snowbeds and its sensitivity to climate change. Plant Ecology 200, 91–104 (2009).

    • Article
    • Google Scholar
  • 34.

    Hitchman, S. M., Mather, M. E., Smith, J. M. & Fencl, J. S. Habitat mosaics and path analysis can improve biological conservation of aquatic biodiversity in ecosystems with low-head dams. Science of the Total Environment 619, 221–231 (2018).

  • 35.

    Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 6, 6707 (2015).

  • 36.

    Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal 2 (2009).

  • 37.

    Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecology 6, 9 (2006).

  • 38.

    Karger, D. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad Digital Repository (2017).

  • 39.

    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Scientific data 4, 170122 (2017).

  • 40.

    Dee, D. P. et al. The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society 137, 553–597 (2011).

  • 41.

    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Package “emmeans”: Estimated Marginal Means, aka Least-Squares Means. Compr. R Arch. Netw, 1-67 (2019).

  • 42.

    Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.4–2. https://CRAN.R-project.org/package=vegan (2017)

  • 43.

    Venables, W. & Ripley, B. Modern applied statistics with S. (Springer-Verlag, New York, 2002).

    • Google Scholar
  • 44.

    Nychka, D., Furrer, R., Paige, J., & Sain, S. Fields: Tools for Spatial Data. R Package version 9.6. https://doi.org/10.5065/D6W957CT, www.image.ucar.edu/~nychka/Fields (2017)

  • 45.

    Rosseel, Y. Lavaan: An R package for structural equation modeling and more. Version 0.5–12 (BETA). Journal of Statistical Software 48, 1–36 (2012).

    • Article
    • Google Scholar
  • 46.

    Graham, E. A. et al. Fine-scale patterns of soil and plant surface temperatures in an alpine fellfield habitat, White Mountains, California. Arctic, Antarctic, and Alpine Research 44, 288–295 (2012).

    • Article
    • Google Scholar
  • 47.

    Körner, C. The use of ‘altitude’in ecological research. Trends in Ecology & Evolution 22, 569–574 (2007).

    • Article
    • Google Scholar
  • 48.

    Lenoir, J. et al. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Global Change Biol 19, 1470–1481 (2013).

  • 49.

    Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38, 406–416, https://doi.org/10.1111/j.1365-2699.2010.02407.x (2011).

    • Article
    • Google Scholar
  • 50.

    Anderson, J. E. & McNaughton, S. Effects of low soil temperature on transpiration, photosynthesis, leaf relative water content, and growth among elevationally diverse plant populations. Ecology 54, 1220–1233 (1973).

    • Article
    • Google Scholar
  • 51.

    Kikvidze, Z. et al. Linking patterns and processes in alpine plant communities: a global study. Ecology 86, 1395–1400 (2005).

    • Article
    • Google Scholar
  • 52.

    Myers, J. A. & Harms, K. E. Seed arrival and ecological filters interact to assemble high‐diversity plant communities. Ecology 92, 676–686 (2011).

  • 53.

    Bello, Fd et al. Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36, 393–402 (2013).

    • Article
    • Google Scholar
  • 54.

    Blonder, B. et al. Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology 96, 972–985 (2015).

  • 55.

    Kraft, N. J. et al. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29, 592–599 (2015).

    • Article
    • Google Scholar
  • 56.

    Bagousse‐Pinguet, L. et al. Testing the environmental filtering concept in global drylands. Journal of Ecology (2017).

  • 57.

    Lundholm, J. T. Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. Journal of Vegetation Science 20, 377–391 (2009).

    • Article
    • Google Scholar
  • 58.

    Totland, Ø. Influence of climate, time of day and season, and flower density on insect flower visitation in alpine Norway. Arctic and Alpine Research 26, 66–71 (1994).

    • Article
    • Google Scholar
  • 59.

    Kühsel, S. & Blüthgen, N. High diversity stabilizes the thermal resilience of pollinator communities in intensively managed grasslands. Nat Commun 6, 7989 (2015).

  • 60.

    Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G. & Willmer, P. Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84, 2628–2642 (2003).

    • Article
    • Google Scholar
  • 61.

    Blüthgen, N. & Klein, A.-M. Functional complementarity and specialisation: the role of biodiversity in plant–pollinator interactions. Basic and Applied Ecology 12, 282–291 (2011).

    • Article
    • Google Scholar
  • 62.

    Fraser, L. H. et al. Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 349, 302–305 (2015).

  • 63.

    Worm, B. & Duffy, J. E. Biodiversity, productivity and stability in real food webs. Trends in Ecology & Evolution 18, 628–632 (2003).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    For cheaper solar cells, thinner really is better

    Testing the waters