in

Mid and long-term ecological impacts of ski run construction on alpine ecosystems

  • 1.

    Rixen, C. et al. Winter tourism and climate change in the Alps: an assessment of resource consumption snow reliability and future snowmaking potential. Mt. Res. Dev. 31, 229–236 (2011).

    Google Scholar 

  • 2.

    Vanat, L. International Report on Snow & Mountain Tourism: Overview of the Key Industry Figures for Ski Resorts, 10th edition (2018).

  • 3.

    Negro, M. et al. Differential responses of ground dwelling arthropods to ski-piste restoration by hydroseeding. Biodivers. Conserv. 22, 2607–2634 (2013).

    Google Scholar 

  • 4.

    Körner, C. The Alpine life zone under global change. Gayana Bot. https://doi.org/10.4067/S0717-66432000000100001 (2000).

    Article  Google Scholar 

  • 5.

    Garcı́a-Llorente, M. et al. What can conservation strategies learn from the ecosystem services approach? Insights from ecosystem assessments in two Spanish protected areas. Biodivers. Conserv. 27, 1575–1597 (2016).

  • 6.

    Egan, P. A. & Price, M. F. Mountain Ecosystem Services and Climate Change. A Global Overview of Potential Threats and Strategies for Adaptation (UNESCO, Paris, 2017).

    Google Scholar 

  • 7.

    MeijerzuSchlochtern, M. P., Rixen, C., Wipf, S. & Cornelissen, J. H. C. Management, winter climate and plant–soil feedbacks on ski slopes: a synthesis. Ecol. Res. 29, 583–592 (2014).

    CAS  Google Scholar 

  • 8.

    Gros, R., Monrozier, L. J., Bartoli, F., Chotte, J. L. & Faivre, P. Relationships between soil physico-chemical properties and microbial activity along a restoration chronosequence of alpine grasslands following ski run construction. Appl. Soil Ecol. 27, 7–22 (2004).

    Google Scholar 

  • 9.

    Barni, E., Freppaz, M. & Siniscalco, C. Interactions between Vegetation, Roots, and Soil Stability in Restored High-altitude Ski Runs in the Alps. Arct. Antarct. Alp. Res. 39, 25–33 (2007).

    Google Scholar 

  • 10.

    Pohl, M., Alig, D., Körner, C. & Rixen, C. Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant Soil 324, 91–102 (2009).

    CAS  Google Scholar 

  • 11.

    Burt, J. W. & Rice, K. J. Not all ski slopes are created equal: Disturbance intensity affects ecosystem properties. Ecol. Appl. 19, 2242–2253 (2009).

    PubMed  Google Scholar 

  • 12.

    Van Andel, J., Bakker, J. P., Bakker, J. P. & Grootjans, A. P. Mechanism of vegetation succession: a review of concepts and perspectives. Acta Bot. Neerlandica 42, 413–433 (1993).

    Google Scholar 

  • 13.

    Styczen, M. E. & Morgan, R. P. C. Engineering properties of vegetation 5–58 (E and FN Spon, New York, 1995).

    Google Scholar 

  • 14.

    Gray, D. H. & Sotir, R. B. Biotechnical and Soil Bioengineering Slope Stabilization: A Practical Guide for Erosion Control (Wiley, New York, 1996).

    Google Scholar 

  • 15.

    Gray, D. H. & Leiser, A. T. Biotechnical Slope Protection and Erosion Control (Van Nostrand Reinhold Company, London, 1982).

    Google Scholar 

  • 16.

    Argenti, G. & Ferrari, L. Plant cover evolution and naturalisation of revegetated ski runs in an Apennine ski resort (Italy). Forest 2, 178–182 (2009).

    Google Scholar 

  • 17.

    Pintaldi, E. et al. Hummocks affect soil properties and soil-vegetation relationships in a subalpine grassland (North-Western Italian Alps). CATENA 145, 214–226 (2016).

    Google Scholar 

  • 18.

    Stokes, A. et al. Ecological mitigation of hillslope instability: ten key issues facing researchers and practitioners. Plant Soil 377, 1 (2014).

    CAS  Google Scholar 

  • 19.

    Burt, J. W. & Clary, J. J. Initial disturbance intensity affects recovery rates and successional divergence on abandoned ski slopes. J. Appl. Ecol. 53, 607–615 (2016).

    Google Scholar 

  • 20.

    Krautzer, B. et al. The influence of recultivation technique and seed mixture on erosion stability after restoration in mountain environment. Nat. Haz. 56, 547–557 (2011).

    Google Scholar 

  • 21.

    Pintaldi, E. et al. Sustainable soil management in ski areas: threats and challenges. Sustainability 9, 2150 (2017).

    Google Scholar 

  • 22.

    Pohl, M., Stroude, R., Buttler, A. & Rixen, C. Functional traits and root morphology of alpine plants. Ann. Bot. 108, 537–545 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Körner, C. Alpine Plant Life Functional Plant Ecology of High Mountain Ecosystems (Springer-Verlag, Berlin, 2003).

    Google Scholar 

  • 24.

    Mercalli, L. Atlante climatico della Valle d’Aosta (Società Meteorologica Italiana, Rome, 2003).

    Google Scholar 

  • 25.

    FAO-ISRIC. World Reference Base for Soil Resources 2014. World Soil Resources Reports No. 103 (FAO, 2014).

  • 26.

    Shannon, C. E. & Wiener, W. The Mathematical Theory of Communication (University Illinois Press, Champaign, 1963).

    Google Scholar 

  • 27.

    Van Andel, J. & Aronson, J. Restoration Ecology. The New Frontier 2nd edn. (Wiley-Blackwell, New York, 2012).

    Google Scholar 

  • 28.

    Landolt, E. et al. Flora Indicativa: Okologische Zeigerwerte und Biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, Bern, 2010).

    Google Scholar 

  • 29.

    Bovio, M. Lista Rossa e Lista Nera della flora vascolare della Valle d’Aosta (Italia, Alpi Nord-occidentali). Aggiornamento anno 2016. Rev. Valdôtaine Hist. Nat. 70, 57–74 (2016).

    Google Scholar 

  • 30.

    Rossi, G. et al. Lista Rossa della Flora Italiana. 1. Policy Species e Altre Specie Minacciate (Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Rome, 2013).

    Google Scholar 

  • 31.

    Aeschimann, P., Lauber, K., Moser, D. M. & Theurillat, J. P. Flora Alpina (Haupt Verlag, Bern, 2004).

    Google Scholar 

  • 32.

    Van Reeuwijk, L. P. Procedures for Soil Analysis. Technical Paper n. 9 (International Soil Reference and Information Centre, Wageningen, 2002).

  • 33.

    Zanini, E., Bonifacio, E., Alberston, J. D. & Nielsen, D. R. Topsoil aggregate breakdown under water-saturated conditions. Soil. Sci. 163, 288–298 (1998).

    ADS  CAS  Google Scholar 

  • 34.

    Kruskal, J. B. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 115–129 (1964).

    MATH  MathSciNet  Google Scholar 

  • 35.

    Oksanen, J. et al. Vegan: community ecology package. R Package Version 2.0-0. ttp://CRAN.Rproject.org/package=vegan (2011).

  • 36.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • 37.

    Wipf, S., Rixen, C., Fischer, M., Schmid, B. & Stoeckli, V. Effects of ski piste preparation on alpine vegetation. J. Appl. Ecol. 42, 306–316 (2005).

    Google Scholar 

  • 38.

    Roux-Fouillet, P., Wipf, S. & Rixen, C. Long-term impacts of ski piste management on alpine vegetation and soils. J. Appl. Ecol. 48, 906–915 (2011).

    Google Scholar 

  • 39.

    Delgado, R. et al. Impact of ski pistes on soil properties, a case study from a mountainous area in the Mediterranean region. Soil Use Manag. 23, 269–277 (2007).

    Google Scholar 

  • 40.

    Argenti, G., Merati, M., Staglianò, N. & Talamucci, P. Establishment and evolution of technical ski slope covers in an alpine environment. Riv. Agron. 34, 186–190 (2000).

    Google Scholar 

  • 41.

    Krautzer, B. et al. Site-specific high zone restoration in the Alpine region: the current technological development (HBLFA Raumberg-Gumpenstein, Irdning, 2006).

    Google Scholar 

  • 42.

    Burt, J. W. Developing restoration planting mixes for active ski slopes: a multi-site reference community approach. J. Environ. Manage. 49, 636–648 (2012).

    ADS  Google Scholar 

  • 43.

    Klug, B. Seed mixtures, seeding methods, and soil seed pools: major factors in erosion control on graded ski-runs. WSEAS Trans. Environ. Dev. 4, 454–459 (2006).

    Google Scholar 

  • 44.

    Barrel, A. et al. Native Seeds for the Ecological Restoration in Mountain Zone: Production and Use of Preservation Mixtures (Institut Agricole Régional, Aosta, 2015).

    Google Scholar 

  • 45.

    Hagen, D., Hansen, T.-I., Graae, B. J. & Rydgren, K. To seed or not to seed in alpine restoration: introduced grass species outcompete rather than facilitate native species. Ecol. Eng. 64, 255–261 (2014).

    Google Scholar 

  • 46.

    Gretarsdottir, J., Aradottir, A. L., Vandvik, V., Heegaard, E. & Birks, H. J. B. Long-term effects of reclamation treatments on plant succession in Iceland. Restor. Ecol. 12, 268–278 (2004).

    Google Scholar 

  • 47.

    Florineth, F. Pflanzen statt Beton (Handbuch zur Ingenieurbiologie und Vegetationstechnik, Berlin-Hannover, 2004).

    Google Scholar 

  • 48.

    Lichtenegger, E. Root distribution in some alpine plants. Acta Phytogeogr Suec. 81, 76–82 (1996).

    Google Scholar 

  • 49.

    Nagelmüller, S., Hiltbrunner, E. & Körner, C. Critically low soil temperatures for root growth and root morphology in three alpine plant species. Alp. Bot. 126, 11–21 (2016).

    Google Scholar 

  • 50.

    Khan, M. A., Gemenet, D. C. & Villordon, A. Root system architecture and abiotic stress tolerance: current knowledge in root and tuber crops. Front. Plant Sci. 7, 1584 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Tracy, S. R. et al. Quantifying the impact of soil compaction on root system architecture in tomato (Solanum lycopersicum) by X-ray micro-computed tomography. Ann. Bot. 110, 511–519 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).

    CAS  PubMed  Google Scholar 

  • 53.

    Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).

    PubMed  Google Scholar 

  • 54.

    Hudek, C., Stanchi, S., D’Amico, M. & Freppaz, M. Quantifying the contribution of the root system of alpine vegetation in the soil aggregate stability of moraine. Int. Soil Water Conserv. Res. 5, 36–42 (2017).

    Google Scholar 

  • 55.

    Gould, I. J., Quinton, J. N., Weigelt, A., De Deyn, G. B. & Bardgett, R. D. Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecol. Lett. 19, 1140–1149 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Solly, E. F. et al. Unravelling the age of fine roots of temperate and boreal forests. Nat. Commun. 9, 3006 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Rixen, C., Freppaz, M., Stöckli, V., Huovinen, C. & Wipf, S. Altered snow density and chemistry change soil nitrogen mineralization and plant growth. Arct. Antarct. Alp. Res. 40, 568–575 (2008).

    Google Scholar 

  • 58.

    Miransari, M. Plant growth promoting Rhizobacteria. J. Plant Nutr. 37, 2227–2235 (2014).

    CAS  Google Scholar 

  • 59.

    Stokes, A., Atger, C., Bengough, A. G., Fourcaud, T. & Sidle, R. C. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 324, 1–30 (2009).

    CAS  Google Scholar 

  • 60.

    Freppaz, M. et al. Soil Properties on Ski-Runs. In Impacts of Skiing and Related Winter Recreational Activities on Mountain Environments p (eds Rixen, C. & Rolando, A.) 45–64 (Bentham Science Publisher, Sharjah, 2013).

    Google Scholar 

  • 61.

    Locher Oberholzer, N. et al. Linee Guida per Il Rinverdimento ad Alta Quota; AGHB Bollettino n2 (Luglio, Verein für Ingenieurbiologie, 2008) ((In Italian)).

    Google Scholar 

  • 62.

    Graf, F. & Brunner, I. Natural and synthesized ectomycorrhizas of the alpine dwarf willow Salix herbacea. Mycorrhiza 6, 227–235 (1996).

    Google Scholar 

  • 63.

    Graf, F. Ectomycorrhiza in alpine eco-engineering. Rev. Valdôtaine Hist. Nat. 52, 314–323 (1997).

    MathSciNet  Google Scholar 

  • 64.

    Graf, F. & Gerber, W. Der Einfluss von Mykorrhizapilzen auf die Bodenstruktur und deren Bedeutung für den Lebendverbau Schweiz. Z. Forstwes 11, 863–886 (1997).

    Google Scholar 

  • 65.

    Frei, M. et al. Quantification of the influence of vegetation on soil stability. In Proceeding of the International Conference on Slope Engineering (Department of Civil Engineering, 2003).

  • 66.

    Krautzer, B., Graiss, W. & Klug, B. Ecological Restoration of Ski-Runs. The Impacts of Skiing and Related Winter Recreational Activities on Mountain Environments 184–209 (Bentham e books, Sharjah, 2013).

    Google Scholar 

  • 67.

    Peratoner, G. Organic Seed Propagation of Alpine Species and Their Use in Ecological Restoration of Ski-Runs in Mountain Regions. Diss. Univ. Kassel. Kassel University Press, 238 (2003).


  • Source: Ecology - nature.com

    Public health is moot without water security

    Decarbonize and diversify