in

Mid and long-term ecological impacts of ski run construction on alpine ecosystems

  • 1.

    Rixen, C. et al. Winter tourism and climate change in the Alps: an assessment of resource consumption snow reliability and future snowmaking potential. Mt. Res. Dev. 31, 229–236 (2011).

    Google Scholar 

  • 2.

    Vanat, L. International Report on Snow & Mountain Tourism: Overview of the Key Industry Figures for Ski Resorts, 10th edition (2018).

  • 3.

    Negro, M. et al. Differential responses of ground dwelling arthropods to ski-piste restoration by hydroseeding. Biodivers. Conserv. 22, 2607–2634 (2013).

    Google Scholar 

  • 4.

    Körner, C. The Alpine life zone under global change. Gayana Bot. https://doi.org/10.4067/S0717-66432000000100001 (2000).

    Article  Google Scholar 

  • 5.

    Garcı́a-Llorente, M. et al. What can conservation strategies learn from the ecosystem services approach? Insights from ecosystem assessments in two Spanish protected areas. Biodivers. Conserv. 27, 1575–1597 (2016).

  • 6.

    Egan, P. A. & Price, M. F. Mountain Ecosystem Services and Climate Change. A Global Overview of Potential Threats and Strategies for Adaptation (UNESCO, Paris, 2017).

    Google Scholar 

  • 7.

    MeijerzuSchlochtern, M. P., Rixen, C., Wipf, S. & Cornelissen, J. H. C. Management, winter climate and plant–soil feedbacks on ski slopes: a synthesis. Ecol. Res. 29, 583–592 (2014).

    CAS  Google Scholar 

  • 8.

    Gros, R., Monrozier, L. J., Bartoli, F., Chotte, J. L. & Faivre, P. Relationships between soil physico-chemical properties and microbial activity along a restoration chronosequence of alpine grasslands following ski run construction. Appl. Soil Ecol. 27, 7–22 (2004).

    Google Scholar 

  • 9.

    Barni, E., Freppaz, M. & Siniscalco, C. Interactions between Vegetation, Roots, and Soil Stability in Restored High-altitude Ski Runs in the Alps. Arct. Antarct. Alp. Res. 39, 25–33 (2007).

    Google Scholar 

  • 10.

    Pohl, M., Alig, D., Körner, C. & Rixen, C. Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant Soil 324, 91–102 (2009).

    CAS  Google Scholar 

  • 11.

    Burt, J. W. & Rice, K. J. Not all ski slopes are created equal: Disturbance intensity affects ecosystem properties. Ecol. Appl. 19, 2242–2253 (2009).

    PubMed  Google Scholar 

  • 12.

    Van Andel, J., Bakker, J. P., Bakker, J. P. & Grootjans, A. P. Mechanism of vegetation succession: a review of concepts and perspectives. Acta Bot. Neerlandica 42, 413–433 (1993).

    Google Scholar 

  • 13.

    Styczen, M. E. & Morgan, R. P. C. Engineering properties of vegetation 5–58 (E and FN Spon, New York, 1995).

    Google Scholar 

  • 14.

    Gray, D. H. & Sotir, R. B. Biotechnical and Soil Bioengineering Slope Stabilization: A Practical Guide for Erosion Control (Wiley, New York, 1996).

    Google Scholar 

  • 15.

    Gray, D. H. & Leiser, A. T. Biotechnical Slope Protection and Erosion Control (Van Nostrand Reinhold Company, London, 1982).

    Google Scholar 

  • 16.

    Argenti, G. & Ferrari, L. Plant cover evolution and naturalisation of revegetated ski runs in an Apennine ski resort (Italy). Forest 2, 178–182 (2009).

    Google Scholar 

  • 17.

    Pintaldi, E. et al. Hummocks affect soil properties and soil-vegetation relationships in a subalpine grassland (North-Western Italian Alps). CATENA 145, 214–226 (2016).

    Google Scholar 

  • 18.

    Stokes, A. et al. Ecological mitigation of hillslope instability: ten key issues facing researchers and practitioners. Plant Soil 377, 1 (2014).

    CAS  Google Scholar 

  • 19.

    Burt, J. W. & Clary, J. J. Initial disturbance intensity affects recovery rates and successional divergence on abandoned ski slopes. J. Appl. Ecol. 53, 607–615 (2016).

    Google Scholar 

  • 20.

    Krautzer, B. et al. The influence of recultivation technique and seed mixture on erosion stability after restoration in mountain environment. Nat. Haz. 56, 547–557 (2011).

    Google Scholar 

  • 21.

    Pintaldi, E. et al. Sustainable soil management in ski areas: threats and challenges. Sustainability 9, 2150 (2017).

    Google Scholar 

  • 22.

    Pohl, M., Stroude, R., Buttler, A. & Rixen, C. Functional traits and root morphology of alpine plants. Ann. Bot. 108, 537–545 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Körner, C. Alpine Plant Life Functional Plant Ecology of High Mountain Ecosystems (Springer-Verlag, Berlin, 2003).

    Google Scholar 

  • 24.

    Mercalli, L. Atlante climatico della Valle d’Aosta (Società Meteorologica Italiana, Rome, 2003).

    Google Scholar 

  • 25.

    FAO-ISRIC. World Reference Base for Soil Resources 2014. World Soil Resources Reports No. 103 (FAO, 2014).

  • 26.

    Shannon, C. E. & Wiener, W. The Mathematical Theory of Communication (University Illinois Press, Champaign, 1963).

    Google Scholar 

  • 27.

    Van Andel, J. & Aronson, J. Restoration Ecology. The New Frontier 2nd edn. (Wiley-Blackwell, New York, 2012).

    Google Scholar 

  • 28.

    Landolt, E. et al. Flora Indicativa: Okologische Zeigerwerte und Biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, Bern, 2010).

    Google Scholar 

  • 29.

    Bovio, M. Lista Rossa e Lista Nera della flora vascolare della Valle d’Aosta (Italia, Alpi Nord-occidentali). Aggiornamento anno 2016. Rev. Valdôtaine Hist. Nat. 70, 57–74 (2016).

    Google Scholar 

  • 30.

    Rossi, G. et al. Lista Rossa della Flora Italiana. 1. Policy Species e Altre Specie Minacciate (Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Rome, 2013).

    Google Scholar 

  • 31.

    Aeschimann, P., Lauber, K., Moser, D. M. & Theurillat, J. P. Flora Alpina (Haupt Verlag, Bern, 2004).

    Google Scholar 

  • 32.

    Van Reeuwijk, L. P. Procedures for Soil Analysis. Technical Paper n. 9 (International Soil Reference and Information Centre, Wageningen, 2002).

  • 33.

    Zanini, E., Bonifacio, E., Alberston, J. D. & Nielsen, D. R. Topsoil aggregate breakdown under water-saturated conditions. Soil. Sci. 163, 288–298 (1998).

    ADS  CAS  Google Scholar 

  • 34.

    Kruskal, J. B. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 115–129 (1964).

    MATH  MathSciNet  Google Scholar 

  • 35.

    Oksanen, J. et al. Vegan: community ecology package. R Package Version 2.0-0. ttp://CRAN.Rproject.org/package=vegan (2011).

  • 36.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • 37.

    Wipf, S., Rixen, C., Fischer, M., Schmid, B. & Stoeckli, V. Effects of ski piste preparation on alpine vegetation. J. Appl. Ecol. 42, 306–316 (2005).

    Google Scholar 

  • 38.

    Roux-Fouillet, P., Wipf, S. & Rixen, C. Long-term impacts of ski piste management on alpine vegetation and soils. J. Appl. Ecol. 48, 906–915 (2011).

    Google Scholar 

  • 39.

    Delgado, R. et al. Impact of ski pistes on soil properties, a case study from a mountainous area in the Mediterranean region. Soil Use Manag. 23, 269–277 (2007).

    Google Scholar 

  • 40.

    Argenti, G., Merati, M., Staglianò, N. & Talamucci, P. Establishment and evolution of technical ski slope covers in an alpine environment. Riv. Agron. 34, 186–190 (2000).

    Google Scholar 

  • 41.

    Krautzer, B. et al. Site-specific high zone restoration in the Alpine region: the current technological development (HBLFA Raumberg-Gumpenstein, Irdning, 2006).

    Google Scholar 

  • 42.

    Burt, J. W. Developing restoration planting mixes for active ski slopes: a multi-site reference community approach. J. Environ. Manage. 49, 636–648 (2012).

    ADS  Google Scholar 

  • 43.

    Klug, B. Seed mixtures, seeding methods, and soil seed pools: major factors in erosion control on graded ski-runs. WSEAS Trans. Environ. Dev. 4, 454–459 (2006).

    Google Scholar 

  • 44.

    Barrel, A. et al. Native Seeds for the Ecological Restoration in Mountain Zone: Production and Use of Preservation Mixtures (Institut Agricole Régional, Aosta, 2015).

    Google Scholar 

  • 45.

    Hagen, D., Hansen, T.-I., Graae, B. J. & Rydgren, K. To seed or not to seed in alpine restoration: introduced grass species outcompete rather than facilitate native species. Ecol. Eng. 64, 255–261 (2014).

    Google Scholar 

  • 46.

    Gretarsdottir, J., Aradottir, A. L., Vandvik, V., Heegaard, E. & Birks, H. J. B. Long-term effects of reclamation treatments on plant succession in Iceland. Restor. Ecol. 12, 268–278 (2004).

    Google Scholar 

  • 47.

    Florineth, F. Pflanzen statt Beton (Handbuch zur Ingenieurbiologie und Vegetationstechnik, Berlin-Hannover, 2004).

    Google Scholar 

  • 48.

    Lichtenegger, E. Root distribution in some alpine plants. Acta Phytogeogr Suec. 81, 76–82 (1996).

    Google Scholar 

  • 49.

    Nagelmüller, S., Hiltbrunner, E. & Körner, C. Critically low soil temperatures for root growth and root morphology in three alpine plant species. Alp. Bot. 126, 11–21 (2016).

    Google Scholar 

  • 50.

    Khan, M. A., Gemenet, D. C. & Villordon, A. Root system architecture and abiotic stress tolerance: current knowledge in root and tuber crops. Front. Plant Sci. 7, 1584 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Tracy, S. R. et al. Quantifying the impact of soil compaction on root system architecture in tomato (Solanum lycopersicum) by X-ray micro-computed tomography. Ann. Bot. 110, 511–519 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).

    CAS  PubMed  Google Scholar 

  • 53.

    Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).

    PubMed  Google Scholar 

  • 54.

    Hudek, C., Stanchi, S., D’Amico, M. & Freppaz, M. Quantifying the contribution of the root system of alpine vegetation in the soil aggregate stability of moraine. Int. Soil Water Conserv. Res. 5, 36–42 (2017).

    Google Scholar 

  • 55.

    Gould, I. J., Quinton, J. N., Weigelt, A., De Deyn, G. B. & Bardgett, R. D. Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecol. Lett. 19, 1140–1149 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Solly, E. F. et al. Unravelling the age of fine roots of temperate and boreal forests. Nat. Commun. 9, 3006 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Rixen, C., Freppaz, M., Stöckli, V., Huovinen, C. & Wipf, S. Altered snow density and chemistry change soil nitrogen mineralization and plant growth. Arct. Antarct. Alp. Res. 40, 568–575 (2008).

    Google Scholar 

  • 58.

    Miransari, M. Plant growth promoting Rhizobacteria. J. Plant Nutr. 37, 2227–2235 (2014).

    CAS  Google Scholar 

  • 59.

    Stokes, A., Atger, C., Bengough, A. G., Fourcaud, T. & Sidle, R. C. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 324, 1–30 (2009).

    CAS  Google Scholar 

  • 60.

    Freppaz, M. et al. Soil Properties on Ski-Runs. In Impacts of Skiing and Related Winter Recreational Activities on Mountain Environments p (eds Rixen, C. & Rolando, A.) 45–64 (Bentham Science Publisher, Sharjah, 2013).

    Google Scholar 

  • 61.

    Locher Oberholzer, N. et al. Linee Guida per Il Rinverdimento ad Alta Quota; AGHB Bollettino n2 (Luglio, Verein für Ingenieurbiologie, 2008) ((In Italian)).

    Google Scholar 

  • 62.

    Graf, F. & Brunner, I. Natural and synthesized ectomycorrhizas of the alpine dwarf willow Salix herbacea. Mycorrhiza 6, 227–235 (1996).

    Google Scholar 

  • 63.

    Graf, F. Ectomycorrhiza in alpine eco-engineering. Rev. Valdôtaine Hist. Nat. 52, 314–323 (1997).

    MathSciNet  Google Scholar 

  • 64.

    Graf, F. & Gerber, W. Der Einfluss von Mykorrhizapilzen auf die Bodenstruktur und deren Bedeutung für den Lebendverbau Schweiz. Z. Forstwes 11, 863–886 (1997).

    Google Scholar 

  • 65.

    Frei, M. et al. Quantification of the influence of vegetation on soil stability. In Proceeding of the International Conference on Slope Engineering (Department of Civil Engineering, 2003).

  • 66.

    Krautzer, B., Graiss, W. & Klug, B. Ecological Restoration of Ski-Runs. The Impacts of Skiing and Related Winter Recreational Activities on Mountain Environments 184–209 (Bentham e books, Sharjah, 2013).

    Google Scholar 

  • 67.

    Peratoner, G. Organic Seed Propagation of Alpine Species and Their Use in Ecological Restoration of Ski-Runs in Mountain Regions. Diss. Univ. Kassel. Kassel University Press, 238 (2003).


  • Source: Ecology - nature.com

    Juvenile hormone regulates the shift from migrants to residents in adult oriental armyworm, Mythimna separata

    Increased temperature has no consequence for behavioral manipulation despite effects on both partners in the interaction between a crustacean host and a manipulative parasite