in

Migrant birds and mammals live faster than residents

  • 1.

    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260 (2003).

    Article  Google Scholar 

  • 2.

    Hahn, S., Bauer, S. & Liechti, F. The natural link between Europe and Africa–2.1 billion birds on migration. Oikos 118, 624–626 (2009).

    Article  Google Scholar 

  • 3.

    Gill, R. E. Jr et al. Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? Proc. R. Soc. B Biol. Sci. 276, 447–457 (2008).

    Article  Google Scholar 

  • 4.

    Kempenaers, B. & Valcu, M. Breeding site sampling across the Arctic by individual males of a polygynous shorebird. Nature 541, 528 (2017).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Dingle, H. & Drake, V. A. What is migration? Bioscience 57, 113–121 (2007).

    Article  Google Scholar 

  • 6.

    Faaborg, J. et al. Recent advances in understanding migration systems of New World land birds. Ecol. Monogr. 80, 3–48 (2010).

    Article  Google Scholar 

  • 7.

    Berthold, P. Bird migration: a general survey. (Oxford University Press on Demand, 2001).

  • 8.

    Dingle, H. The biology of life on the move. (New York, NY: Oxford University Press, 2014).

  • 9.

    Rappole, J. H. The Avian Migrant: The Biology of Bird Migration. (Columbia University Press, 2013).

  • 10.

    Pulido, F. The genetics and evolution of avian migration. BioScience 57, 165–174 (2007).

    Article  Google Scholar 

  • 11.

    Berthold, P., Gwinner, E. & Sonnenschein, E. Avian Migration. (Springer Science & Business Media, 2013).

  • 12.

    Bearhop, S. et al. Assortative mating as a mechanism for rapid evolution of a migratory divide. Science 310, 502–504 (2005).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Sutherland, W. J. Evidence for flexibility and constraint in migration systems. J. Avian Biol. 29, 441–446 (1998).

    Article  Google Scholar 

  • 14.

    Piersma, T. & van Gils, J. A.. The Flexible Phenotype: A Body-Centred Integration of Ecology, Physiology, and Behaviour. (Oxford University Press, 2011).

  • 15.

    Healy, K., Ezard, T. H. G., Jones, O. R., Salguero-Gómez, R. & Buckley, Y. M. Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nat. Ecol. Evol. 3, 1217–1224 (2019).

    Article  Google Scholar 

  • 16.

    Stearns, S. C. The evolution of life histories. (Oxford University Press, London, 1992).

  • 17.

    Roff, D. Evolution Of Life Histories: Theory and Analysis. (Springer Science & Business Media, 1993).

  • 18.

    Boyle, W. A. & Conway, C. J. Why migrate? A test of the evolutionary precursor hypothesis. Am. Nat. 169, 344–359 (2007).

    Article  Google Scholar 

  • 19.

    Winger, B. M., Auteri, G. G., Pegan, T. M. & Weeks, B. C. A long winter for the Red Queen: rethinking the evolution of seasonal migration. Biol. Rev. 94, 737–752 (2019).

  • 20.

    Levey, D. J. & Stiles, F. G. Evolutionary precursors of long-distance migration: resource availability and movement patterns in neotropical landbirds. Am. Nat. 140, 447–476 (1992).

    Article  Google Scholar 

  • 21.

    Kokko, H. & Lundberg, P. Dispersal, migration, and offspring retention in saturated habitats. Am. Nat. 157, 188–202 (2001).

    CAS  Article  Google Scholar 

  • 22.

    Altizer, S., Bartel, R. & Han, B. A. Animal migration and infectious disease risk. Science 331, 296–302 (2011).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Sillett, T. S. & Holmes, R. T. Variation in survivorship of a migratory songbird throughout its annual cycle. J. Anim. Ecol. 71, 296–308 (2002).

    Article  Google Scholar 

  • 24.

    Klaassen, R. H. G. et al. When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J. Anim. Ecol. 83, 176–184 (2016).

  • 25.

    Lindström, Å. Finch flock size and risk of hawk predation at a migratory stopover site. Auk Ornithol. Adv. 106, 225–232 (1989).

    Google Scholar 

  • 26.

    Conklin, J. R., Senner, N. R., Battley, P. F. & Piersma, T. Extreme migration and the individual quality spectrum. J. Avian Biol. 48, 19–36 (2017).

    Article  Google Scholar 

  • 27.

    Böhning-Gaese, K., Halbe, B., Lemoine, N. & Oberrath, R. Factors influencing the clutch size, number of broods and annual fecundity of North American and European land birds. Evol. Ecol. Res. 2, 823–839 (2000).

    Google Scholar 

  • 28.

    Jetz, W., Sekercioglu, C. H. & Böhning-Gaese, K. The worldwide variation in avian clutch size across species and space. PLOS Biol. 6, e303 (2008).

    Article  CAS  Google Scholar 

  • 29.

    Ricklefs, R. E. & Wikelski, M. The physiology/life-history nexus. Trends Ecol. Evol. 17, 462–468 (2002).

    Article  Google Scholar 

  • 30.

    Peters, P. H. Ecological Implication of Body Size. (Cambridge Studies in Ecology). (Cambridge University Press, cambridge, 1983).

  • 31.

    Schmidt-Nielsen, K. & Knut, S.-N. Scaling: Why is Animal Size So Important? (Cambridge University Press, 1984).

  • 32.

    Hedenström, A. Scaling migration speed in animals that run, swim and fly. J. Zool. 259, 155–160 (2003).

    Article  Google Scholar 

  • 33.

    Hedenström Anders. Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Philos. Trans. R. Soc. B Biol. Sci. 363, 287–299 (2008).

    Article  Google Scholar 

  • 34.

    Hein, A. M., Hou, C. & Gillooly, J. F. Energetic and biomechanical constraints on animal migration distance. Ecol. Lett. 15, 104–110 (2012).

    Article  Google Scholar 

  • 35.

    Teitelbaum, C. S. et al. How far to go? Determinants of migration distance in land mammals. Ecol. Lett. 18, 545–552 (2015).

    Article  Google Scholar 

  • 36.

    Watanabe, Y. Y. Flight mode affects allometry of migration range in birds. Ecol. Lett. 19, 907–914 (2016).

    Article  Google Scholar 

  • 37.

    Newton, I. The migration ecology of birds. (Academic Press: Oxford, 2008).

  • 38.

    Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Alexander, R. M. C. N. When is migration worthwhile for animals that walk, swim or fly? J. Avian Biol. 29, 387–394 (1998).

    Article  Google Scholar 

  • 40.

    Klaassen, M. Metabolic constraints on long-distance migration in birds. J. Exp. Biol. 199, 57–64 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Klaassen, M. & Lindström, Å. Departure fuel loads in time-minimizing migating birds can be explained by the energy costs of being heavy. J. Theor. Biol. 183, 29–34 (1996).

    Article  Google Scholar 

  • 42.

    Lindström, Å. Fuel deposition rates in migrating birds: causes, constraints and consequences. in Avian Migration (eds Berthold, P., Gwinner, E. & Sonnenschein, E.) 307–320 (Springer, 2003).

  • 43.

    Newton, I. Weather-related mass-mortality events in migrants. Ibis 149, 453–467 (2007).

    Article  Google Scholar 

  • 44.

    Gylfe, Å., Bergström, S., Lundstróm, J. & Olsen, B. Reactivation of Borrelia infection in birds. Nature 403, 724 (2000).

    ADS  CAS  Article  Google Scholar 

  • 45.

    Walter, H. Eleonora’s Falcon: Adaptations to Prey and Habitat in a Social Raptor. (University of Chicago Press, 1979).

  • 46.

    Somveille, M., Rodrigues, A. S. L. & Manica, A. Why do birds migrate? A macroecological perspective. Glob. Ecol. Biogeogr. 24, 664–674 (2015).

    Article  Google Scholar 

  • 47.

    Dalby, L., McGill, B. J., Fox, A. D. & Svenning, J.-C. Seasonality drives global-scale diversity patterns in waterfowl (Anseriformes) via temporal niche exploitation. Glob. Ecol. Biogeogr. 23, 550–562 (2014).

    Article  Google Scholar 

  • 48.

    Able, K. P. & Belthoff, J. R. Rapid ‘evolution’ of migratory behaviour in the introduced house finch of eastern North America. Proc. R. Soc. Lond. B Biol. Sci. 265, 2063–2071 (1998).

    Article  Google Scholar 

  • 49.

    Pérez-Tris, J. & Tellería, J. L. Migratory and sedentary blackcaps in sympatric non-breeding grounds: implications for the evolution of avian migration. J. Anim. Ecol. 71, 211–224 (2002).

    Article  Google Scholar 

  • 50.

    Chapman, B. B., Brönmark, C., Nilsson, J.-Å. & Hansson, L.-A. The ecology and evolution of partial migration. Oikos 120, 1764–1775 (2011).

    Article  Google Scholar 

  • 51.

    Fogarty, M. J., Sissenwine, M. P. & Cohen, E. B. Recruitment variability and the dynamics of exploited marine populations. Trends Ecol. Evol. 6, 241–246 (1991).

    CAS  Article  Google Scholar 

  • 52.

    Forcada, J., Trathan, P. N. & Murphy, E. J. Life history buffering in Antarctic mammals and birds against changing patterns of climate and environmental variation. Glob. Change Biol. 14, 2473–2488 (2008).

    Google Scholar 

  • 53.

    Winger, B. M. & Pegan, T. M. The evolution of seasonal migration and the slow-fast continuum of life history in birds. bioRxiv 2020.06.27.175539 (2020), https://doi.org/10.1101/2020.06.27.175539.

  • 54.

    Martin, T. E. Nest predation and nest sites. BioScience 43, 523–532 (1993).

    Article  Google Scholar 

  • 55.

    Hurlbert, A. H. & Haskell, J. P. The effect of energy and seasonality on avian species richness and community composition. Am. Nat. 161, 83–97 (2003).

    Article  Google Scholar 

  • 56.

    Buckley, L. B., Hurlbert, A. H. & Jetz, W. Broad-scale ecological implications of ectothermy and endothermy in changing environments. Glob. Ecol. Biogeogr. 21, 873–885 (2012).

    Article  Google Scholar 

  • 57.

    Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing. PLoS Biol. 6, e188 (2008).

    Article  CAS  Google Scholar 

  • 58.

    van Gils, J. A. et al. Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range. Science 352, 819–821 (2016).

    ADS  Article  CAS  Google Scholar 

  • 59.

    Wikelski, M. & Tertitski, G. Living sentinels for climate change effects. Science 352, 775–776 (2016).

    ADS  CAS  Article  Google Scholar 

  • 60.

    Myhrvold, N. P. et al. An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles. Ecology 96, 3109–3109 (2015).

    Article  Google Scholar 

  • 61.

    Eyres, A., Böhning-Gaese, K. & Fritz, S. A. Quantification of climatic niches in birds: adding the temporal dimension. J. Avian Biol. 48, 1517–1531 (2017).

    Article  Google Scholar 

  • 62.

    Gnanadesikan, G. E., Pearse, W. D. & Shaw, A. K. Evolution of mammalian migrations for refuge, breeding, and food. Ecol. Evol. 7, 5891–5900 (2017).

    Article  Google Scholar 

  • 63.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    ADS  CAS  Article  Google Scholar 

  • 64.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 217–223 (2014), https://doi.org/10.1111/j.2041-210X.2011.00169.x@10.1111/(ISSN)2041-210X.TOPMETHODS.

  • 65.

    Fritz, S. A., Bininda-Emonds, O. R. P. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).

    Article  Google Scholar 

  • 66.

    Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B Biol. Sci. 281, 20140298 (2014).

    Article  Google Scholar 

  • 67.

    Revell, L. J. Size-correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268 (2009).

    Article  Google Scholar 

  • 68.

    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877 (1999).

    ADS  CAS  Article  Google Scholar 

  • 69.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33 (2010).

  • 70.

    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Negative to positive shifts in diversity effects on soil nitrogen over time

    Fire-scarred fossil tree from the Late Triassic shows a pre-fire drought signal