in

Millennial-scale hydroclimate control of tropical soil carbon storage

  • 1.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

  • 2.

    Melillo, J. M. et al. Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176 (2002).

  • 3.

    Lloyd, J. & Taylor, J. A. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994).

    • Google Scholar
  • 4.

    Carvalhais, N. et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514, 213–217 (2014).

  • 5.

    Bloom, A. A., Exbrayat, J. F., van der Velde, I. R., Feng, L. & Williams, M. The decadal state of the terrestrial carbon cycle: global retrievals of terrestrial carbon allocation, pools, and residence times. Proc. Natl Acad. Sci. USA 113, 1285–1290 (2016).

    • CAS
    • Google Scholar
  • 6.

    Hein, C. J., Galy, V. V., Galy, A., France-Lanord, C. & Kudrass, H. Post-glacial climate forcing of surface processes in the Ganges–Brahmaputra river basin and implications for carbon sequestration. Earth Planet. Sci. Lett. 478, 89–101 (2017).

    • CAS
    • Google Scholar
  • 7.

    Friend, A. D. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc. Natl Acad. Sci. USA 111, 3280–3285 (2014).

    • CAS
    • Google Scholar
  • 8.

    Xia, J. et al. Terrestrial carbon cycle affected by non-uniform climate warming. Nat. Geosci. 7, 173–180 (2014).

    • CAS
    • Google Scholar
  • 9.

    Hicks Pries, C. E. H., Castanha, C., Porras, R. C. & Torn, M. S. The whole-soil carbon flux in response to warming. Science 355, 1420–1423 (2017).

    • CAS
    • Google Scholar
  • 10.

    Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).

  • 11.

    Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).

    • CAS
    • Google Scholar
  • 12.

    Simpson, G. & Castelltort, S. Model shows that rivers transmit high-frequency climate cycles to the sedimentary record. Geology 40, 1131–1134 (2012).

    • Google Scholar
  • 13.

    Aufdenkampe, A. K. et al. Organic matter in the Peruvian headwaters of the Amazon: compositional evolution from the Andes to the lowland Amazon mainstem. Org. Geochem. 38, 337–364 (2007).

    • CAS
    • Google Scholar
  • 14.

    Drenzek, N. et al. A new look at old carbon in active margin sediments. Geology 37, 239–242 (2009).

    • CAS
    • Google Scholar
  • 15.

    Hilton, R. G., Galy, A., Hovius, N. & Horng, M. J. Efficient transport of fossil organic carbon to the ocean by steep mountain rivers: an orogenic carbon sequestration mechanism. Geology 39, 71–74 (2011).

    • CAS
    • Google Scholar
  • 16.

    Schefuß, E. et al. Hydrologic control of carbon cycling and aged carbon discharge in the Congo River basin. Nat. Geosci. 9, 687–690 (2016).

    • Google Scholar
  • 17.

    Galy, V. & Eglinton, T. I. Protracted storage of biospheric carbon in the Ganges–Brahmaputra basin. Nat. Geosci. 4, 843–847 (2011).

    • CAS
    • Google Scholar
  • 18.

    Soulet, G., Skinner, L. C., Beaupré, S. R. & Galy, V. A note on reporting of reservoir 14C disequilibria and age offsets. Radiocarbon 58, 205–211 (2016).

    • CAS
    • Google Scholar
  • 19.

    French, K. L. et al. Millennial soil retention of terrestrial organic carbon matter deposited in the Bengal Fan. Sci. Rep. 8, 11997 (2018).

  • 20.

    Yu, H. et al. Soil carbon release responses to long-term versus short-term climatic warming in an arid ecosystem. Biogeosci. 17, 781–792 (2020).

    • Google Scholar
  • 21.

    Milliman, J. D. & Syvitski, J. P. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100, 525–544 (1992).

    • Google Scholar
  • 22.

    Galy, V. et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450, 407–410 (2007).

  • 23.

    Galy, V., Peucker-Ehrenbrink, B. & Eglinton, T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521, 204–207 (2015).

  • 24.

    France-Lanord, C. & Derry, L. A. Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature 390, 65–67 (1997).

    • CAS
    • Google Scholar
  • 25.

    Roxy, M. K. et al. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun. 6, 7423 (2015).

  • 26.

    Gustafsson, Ö., Van Dongen, B. E., Vonk, J. E., Dudarev, O. V. & Semiletov, I. P. Widespread release of old carbon across the Siberian Arctic echoed by its large rivers. Biogeosciences 8, 1737–1743 (2011).

    • CAS
    • Google Scholar
  • 27.

    Ciais, P. et al. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nat. Geosci. 5, 74–79 (2012).

    • CAS
    • Google Scholar
  • 28.

    Christensen, J. H. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 1217–1308 (Cambridge University Press, 2013).

  • 29.

    Sharmila, S., Joseph, S., Sahai, A. K., Abhilash, S. & Chattopadhyay, R. Future projection of Indian summer monsoon variability under climate change scenario: an assessment from CMIP5 climate models. Global Planet. Change 124, 62–78 (2015).

    • Google Scholar
  • 30.

    Kawamura, K. et al. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448, 912–916 (2007).

  • 31.

    Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016); corrigendum 541, 122 (2016).

  • 32.

    Weber, M. E., Wiedicke, M. H., Kudrass, H. R., Hübscher, C. & Erlenkeuser, H. Active growth of the Bengal Fan during sea-level rise and highstand. Geology 25, 315–318 (1997).

    • CAS
    • Google Scholar
  • 33.

    Bronk Ramsey, C. B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    • Google Scholar
  • 34.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    • CAS
    • Google Scholar
  • 35.

    Dutta, K., Bhushan, R. & Somayajulu, B. ΔR correction values for the northern Indian Ocean. Radiocarbon 43, 483–488 (2001).

    • Google Scholar
  • 36.

    Southon, J., Kashgarian, M., Fontugne, M., Metivier, B. & Yim, W. W. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44, 167–180 (2002).

    • Google Scholar
  • 37.

    Blaauw, M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat. Geochronol. 5, 512–518 (2010).

    • Google Scholar
  • 38.

    Christl, M. et al. The ETH Zurich AMS facilities: performance parameters and reference materials. Nucl. Instrum. Methods Phys. Res. B 294, 29–38 (2013).

    • CAS
    • Google Scholar
  • 39.

    Eglinton, T. I. et al. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Anal. Chem. 68, 904–912 (1996).

    • CAS
    • Google Scholar
  • 40.

    Santos, G. M. et al. Blank assessment for ultra-small radiocarbon samples: chemical extraction and separation versus AMS. Radiocarbon 52, 1322–1335 (2010).

    • CAS
    • Google Scholar
  • 41.

    Shah Walter, S. R. et al. Ultra-small graphitization reactors for ultra-microscale 14C analysis at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility. Radiocarbon 57, 109–122 (2015).

    • Google Scholar
  • 42.

    Kusch, S., Rethemeyer, J., Schefuß, E. & Mollenhauer, G. Controls on the age of vascular plant biomarkers in Black Sea sediments. Geochim. Cosmochim. Acta 74, 7031–7047 (2010).

    • CAS
    • Google Scholar
  • 43.

    Ohkouchi, N., Eglinton, T. I. & Hayes, J. M. Radiocarbon dating of individual fatty acids as a tool for refining Antarctic margin sediment chronologies. Radiocarbon 45, 17–24 (2003).

    • CAS
    • Google Scholar
  • 44.

    Olsson, I. U. (ed). Radiocarbon Variations and Absolute Chronology: Nobel Symposium, 12th Proc. (John Wiley, 1970).

  • 45.

    Stuiver, M. & Polach, H. A. Discussion: reporting of 14C data. Radiocarbon 19, 355–363 (1977).

    • Google Scholar
  • 46.

    Reimer, P. J., Brown, T. A. & Reimer, R. W. Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46, 1299–1304 (2004).

    • CAS
    • Google Scholar
  • 47.

    Soulet, G. Methods and codes for reservoir–atmosphere 14C age offset calculations. Quat. Geochronol. 29, 97–103 (2015).

    • Google Scholar
  • 48.

    Galy, V., Beyssac, O., France-Lanord, C. & Eglinton, T. I. Recycling of graphite during Himalayan erosion: a geological stabilization of carbon in the crust. Science 322, 943–945 (2008).

  • 49.

    Galy, V., Hein, C., France-Lanord, C. & Eglinton, T. in Biogeochemical Dynamics at Major River-Coastal Interfaces: Linkages with Global Change (eds Bianchi, T., Allison, M. & Cai, W.-J.) 353–372 (Cambridge Univ. Press, 2014).

  • 50.

    Lupker, M., France-Lanord, C., Galy, V., Lavé, J. & Kudrass, H. Increasing chemical weathering in the Himalayan system since the Last Glacial Maximum. Earth Planet. Sci. Lett. 365, 243–252 (2013).

    • CAS
    • Google Scholar
  • 51.

    Lambeck, K. & Chappell, J. Sea-level change through the last glacial cycle. Science 292, 679–686 (2001).

  • 52.

    Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).

  • 53.

    Collins, J. A. et al. Estimating the hydrogen isotopic composition of past precipitation using leaf-waxes from western Africa. Quat. Sci. Rev. 65, 88–101 (2013).

    • Google Scholar
  • 54.

    Galy, V., Eglinton, T., France-Lanord, C. & Sylva, S. The provenance of vegetation and environmental signatures encoded in vascular plant biomarkers carried by the Ganges–Brahmaputra rivers. Earth Planet. Sci. Lett. 304, 1–12 (2011).

    • CAS
    • Google Scholar
  • 55.

    Schwenk, T., Spieß, V., Hübscher, C. & Breitzke, M. Frequent channel avulsions within the active channel–levee system of the middle Bengal Fan—an exceptional channel–levee development derived from Parasound and Hydrosweep data. Deep Sea Res. Part II Top. Stud. Oceanogr. 50, 1023–1045 (2003).

    • Google Scholar

  • Source: Ecology - nature.com

    Mutualist and pathogen traits interact to affect plant community structure in a spatially explicit model

    3 Questions: Anne McCants on climate change in history