in

Mineral nitrogen captured in field-aged biochar is plant-available

  • 1.

    World Meteorological Organization & Atmosphere Watch Global. The state of greenhouse gases in the atmosphere based on global observations through 2017. World Meteorol. Organ. Bull. 1–4 (2017). ISSN 2078-0796.

  • 2.

    Werner, C., Schmidt, H. P., Gerten, D., Lucht, W. & Kammann, C. Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5°C. Environ. Res. Lett. 13, 044036 (2018).

    ADS  Article  Google Scholar 

  • 3.

    Smith, P. et al. Impacts of land-based greenhouse gas removal options on ecosystem services and the United Nations sustainable development goals. Annu. Rev. Environ. Resour. 44, 1–32 (2019).

    Article  Google Scholar 

  • 4.

    Renforth, P. & Wilcox, J. Specialty grand challenge: negative emission technologies. Front. Clim. 1, 1–4 (2019).

    Article  Google Scholar 

  • 5.

    de Coninck, H. et al. 2018: Strengthening and implementing the global response. In: Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (ed. MassonDelmotte, V. et al.) (in press).

  • 6.

    Lal, R. et al. The carbon sequestration potential of terrestrial ecosystems. J. Soil Water Conserv. 73, 145A-152A (2018).

    Article  Google Scholar 

  • 7.

    Pool, S. C. & Lal, R. Conceptual basis of managing soil carbon: inspired by nature and driven by science. J. Soil Water Conserv. 74, 29A-34A (2019).

    Article  Google Scholar 

  • 8.

    Lehmann, J., Gaunt, J. & Rondon, M. Bio-char sequestration in terrestrial ecosystems—a review. Mitig. Adapt. Strateg. Glob. Change 11, 403–427 (2006).

    Article  Google Scholar 

  • 9.

    Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).

    ADS  PubMed  Article  Google Scholar 

  • 10.

    Woolf, D., Lehmann, J. & Lee, D. R. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration. Nat. Commun. 7, 1–11 (2016).

    ADS  Article  Google Scholar 

  • 11.

    Schmidt, H. P. et al. Pyrogenic carbon capture and storage. GCB Bioenergy 11, 573–591 (2019).

    CAS  Article  Google Scholar 

  • 12.

    Clark, M., Hastings, M. G. & Ryals, R. Soil carbon and nitrogen dynamics in two agricultural soils amended with manure-derived biochar. J. Environ. Qual. 48, 727–734 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Kammann, C. & Müller, C. Stimulation of methane oxidation by CH4-emitting rose chafer larvae in well-aerated grassland soil. Biol. Fertil. Soils https://doi.org/10.1007/s00374-017-1199-8 (2017).

    Article  Google Scholar 

  • 14.

    Simon, J. et al. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 12, 53001 (2017).

    Article  Google Scholar 

  • 15.

    Dai, Y., Zheng, H., Jiang, Z. & Xing, B. Combined Effects of Biochar Properties and Soil Conditions on Plant Growth: A Meta-analysis. Science of the Total Environment Vol. 713 (Elsevier BV, Amsterdam, 2020).

    Google Scholar 

  • 16.

    Borchard, N. et al. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis. Sci. Total Environ. 651, 2354–2364 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 17.

    Cayuela, M. L. et al. Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric. Ecosyst. Environ. 191, 5–16 (2014).

    CAS  Article  Google Scholar 

  • 18.

    Glaser, B., Kuzyakov, Y., Bogomolova, I. & Glaser, B. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 70, 229–236 (2014).

    Article  Google Scholar 

  • 19.

    Schulz, H. et al. Positive effects of composted biochar on plant growth and soil fertility. Agron. Sustain. Dev. 33, 817–827 (2013).

    CAS  Article  Google Scholar 

  • 20.

    Farrar, M. B. et al. Short-term effects of organo-mineral enriched biochar fertiliser on ginger yield and nutrient cycling. J. Soils Sedim. 19, 1–15 (2018).

    Google Scholar 

  • 21.

    Cornelissen, G., Pandit, N. R., Taylor, P. & Pandit, B. H. Emissions and char quality of flame-curtain “Kon Tiki” Kilns for Farmer-Scale charcoal/biochar production. PLoS ONE https://doi.org/10.1371/journal.pone.0154617 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Chen, L. et al. Formulating and optimizing a novel biochar-based fertilizer for simultaneous slow-release of nitrogen and immobilization of cadmium. Sustainability https://doi.org/10.3390/su10082740 (2018).

    Article  Google Scholar 

  • 23.

    Joseph, S. et al. Shifting paradigms development of high-efficiency. Carbon Manag. 4, 323–343 (2013).

    CAS  Article  Google Scholar 

  • 24.

    Shi, W. et al. Biochar bound urea boosts plant growth and reduces nitrogen leaching. Sci. Total Environ. 701, 134424 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 25.

    Kammann, C. I. et al. Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 5, 11080. https://doi.org/10.1038/srep11080 (2015).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Lawrinenko, M., Laird, D. A., Johnson, R. L. & Jing, D. Accelerated aging of biochars: impact on anion exchange capacity. Carbon 103, 217–227 (2016).

    CAS  Article  Google Scholar 

  • 27.

    Haider, G., Steffens, D., Müller, C. & Kammann, C. I. C. I. Standard extraction methods may underestimate nitrate stocks captured by field-aged biochar. J. Environ. Qual. 45, 1196–1204 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Haider, G., Steffens, D., Moser, G., Müller, C. & Kammann, C. I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst. Environ. 237, 80–94 (2017).

    CAS  Article  Google Scholar 

  • 29.

    Joseph, S. et al. Microstructural and associated chemical changes during the composting of a high temperature biochar: mechanisms for nitrate, phosphate and other nutrient retention and release. Sci. Total Environ. 618, 1210–1223 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 30.

    Hagemann, N., Kammann, C. I., Schmidt, H., Kappler, A. & Behrens, S. Nitrate capture and slow release in biochar amended compost and soil. PLoS ONE https://doi.org/10.1371/journal.pone.0171214 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Hagemann, N. et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat. Commun. 8, 1–11 (2017).

    CAS  Article  Google Scholar 

  • 32.

    Wiedner, K. et al. Acceleration of biochar surface oxidation during composting?. J. Agric. Food Chem. 63, 3830–3837 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Prendergast-Miller, M. T., Duvall, M. & Sohi, S. P. Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur. J. Soil Sci. 65, 173–185 (2014).

    CAS  Article  Google Scholar 

  • 34.

    Xiang, Y., Deng, Q., Duan, H. & Guo, Y. Effects of biochar application on root traits: a meta-analysis. GCB Bioenergy 9, 1563–1572 (2017).

    Article  Google Scholar 

  • 35.

    Qian, L. et al. Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China. Carbon Manag. 5, 145–154 (2014).

    CAS  Article  Google Scholar 

  • 36.

    Cornelissen, G. et al. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agronomy 3, 256–274 (2013).

    Article  Google Scholar 

  • 37.

    Schmidt, H. P., Pandit, B. H., Cornelissen, G. & Kammann, C. I. Biochar-based fertilization with liquid nutrient enrichment: 21 field trials covering 13 crop species in Nepal. Land. Degrad. Dev. 28, 2324–2342 (2017).

    Article  Google Scholar 

  • 38.

    Hammer, E. C. et al. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol. Biochem. 77, 252–260 (2014).

    CAS  Article  Google Scholar 

  • 39.

    Zemanová, V., Břendová, K., Pavlíková, D., Kubátová, P. & Tlustoš, P. Effect of biochar application on the content of nutrients(Ca, Fe, K, Mg, Na, P) and amino acids in subsequently growing spinach and mustard. Plant Soil Environ. 63, 322–327 (2017).

    Article  Google Scholar 

  • 40.

    Kakabouki, ΙP. et al. Influence of fertilization and soil tillage on nitrogen uptake and utilization efficiency of quinoa crop (Chenopodium quinoa Willd.). J. Soil Sci. Plant Nutr. 18, 220–235 (2018).

    CAS  Google Scholar 

  • 41.

    Bascuñán-Godoy, L. et al. Nitrogen physiology of contrasting genotypes of Chenopodium quinoa Willd. (Amaranthaceae). Sci. Rep. 8, 1–12 (2018).

    Article  Google Scholar 

  • 42.

    Lawrinenko, M., Jing, D., Banik, C. & Laird, D. A. Aluminum and iron biomass pretreatment impacts on biochar anion exchange capacity. Carbon 118, 422–430 (2017).

    CAS  Article  Google Scholar 

  • 43.

    Conte, P. et al. Mechanisms of water interaction with pore systems of hydrochar and pyrochar from poplar forestry waste. J. Agric. Food Chem. 62, 4917–4923 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Conte, P. & Laudicina, V. Mechanisms of organic coating on the surface of a poplar biochar. Curr. Org. Chem. 21, 559–565 (2017).

    CAS  Article  Google Scholar 

  • 45.

    Kammann, C., Ratering, S., Eckhard, C. & Müller, C. Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. J. Environ. Qual. 41, 1052–1066 (2011).

    Article  Google Scholar 

  • 46.

    Keeney, D. R. & Nelson, D. W. Nitrogen—inorganic forms. In Methods of Soil Analysis, Agronomy Monograph 9, Part 2, Second Edition (ed. Page, A. L.) 643–698 (ASA, SSSA, Madison, 1982).

  • 47.

    Archanjo, B. S. et al. Nanoscale analyses of the surface structure and composition of biochars extracted from field trials or after co-composting using advanced analytical electron microscopy. Geoderma 294, 70–79 (2017).

    ADS  CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Pit lakes from Southern Sweden: natural radioactivity and elementary characterization

    Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens