in

Modern arsenotrophic microbial mats provide an analogue for life in the anoxic Archean

  • 1.

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    CAS  Article  Google Scholar 

  • 2.

    Canfield, D. E. The early history of atmospheric oxygen: homage to Robert M. Garrels. Ann. Rev. Earth Planet. Sci. 33, 1–36 (2005).

    CAS  Article  Google Scholar 

  • 3.

    Poulton, S. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

    CAS  Article  Google Scholar 

  • 4.

    Siever, R. The silica cycle in the Precambrian. Geochim. Cosmochim. Acta 56, 3265–3272 (1992).

    CAS  Article  Google Scholar 

  • 5.

    Large, R. R. et al. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth Planet. Sci. Lett. 389, 209–220 (2014).

    CAS  Article  Google Scholar 

  • 6.

    Walter, M. R., Buick, R. & Dunlop, J. S. R. Stromatolites: 3,400–3,500 m year-old from the North Pole area, Western Australia. Nature 284, 443–445 (1980).

    Article  Google Scholar 

  • 7.

    Nisbet, E. G. & Fowler, C. M. R. Archean metabolic evolution of microbial mats. Proc. R. Soc. Lond. B 266, 2375–2382 (1991).

    Article  Google Scholar 

  • 8.

    Tice, M. M. & Lowe, D. R. Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology 34, 37 (2006).

    CAS  Article  Google Scholar 

  • 9.

    Van Kranendonk, M. J. Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: new evidence from the Warrawoona Group. Earth-Sci. Rev. 74, 197–240 (2006).

    Article  CAS  Google Scholar 

  • 10.

    Noffke, N., Eriksson, K. A., Hazen, R. M. & Simpson, E. L. A new window into Early Archean life: microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34, 253 (2006).

    CAS  Article  Google Scholar 

  • 11.

    Noffke, N., Christian, D., Wacey, D. & Hazen, R. M. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology 13, 1103–1124 (2013).

    CAS  Article  Google Scholar 

  • 12.

    Dupraz, C. et al. Processes of carbonate precipitation in modern microbial mats. Earth Sci. Rev. 96, 141–162 (2009).

    CAS  Article  Google Scholar 

  • 13.

    Sakurai, R., Ito, M., Ueno, Y., Kitajima, K. & Maruyama, S. Facies architecture and sequence-stratigraphic features of the Tumbiana Formation in the Pilbara Craton, northwestern Australia: implications for depositional environments of oxygenic stromatolites during the Late Archean. Precambrian Res. 138, 255–273 (2005).

    CAS  Article  Google Scholar 

  • 14.

    Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P. & Burch, I. W. Stromatolite reef from the Early Archaean era of Australia. Nature 441, 714–718 (2006).

    CAS  Article  Google Scholar 

  • 15.

    Allwood, A. C., Rosing, M. T., Flannery, D., Hurowitz, J. & Heirwegh, C. M. Reassessing evidence of life in 3,700-million-year-old rocks of Greenland. Nature 563, 241–244 (2018).

    CAS  Article  Google Scholar 

  • 16.

    Nutman, A. P., Bennett, V. C., Friend, C. R. L., Van Kranendonk, M. J. & Chivas., A. R. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537, 535–538 (2016).

    CAS  Article  Google Scholar 

  • 17.

    Lepot, K. et al. Extreme 13C-depletions and organic sulfur argue for S-fueled anaerobic methane oxidation in 2.72 Ga old stromatolites. Geochim. Cosmochim. Acta 244, 522–547 (2019).

    CAS  Article  Google Scholar 

  • 18.

    Baumgartner, R. et al. Nano-porous pyrite and organic matter in 3.5 billion-year-old stromatolites record primordial life. Geology 47, 1039–1043 (2019).

    CAS  Article  Google Scholar 

  • 19.

    Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the great oxidation event. Nat. Geosci. 7, 283–286 (2014).

    CAS  Article  Google Scholar 

  • 20.

    Lalonde, S. V. & Konhauser, K. O. Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 112, 995–1000 (2015).

    CAS  Article  Google Scholar 

  • 21.

    Bosak, T., Green, S. E. & Newman, D. K. A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites. Geobiology 5, 119–126 (2007).

    CAS  Article  Google Scholar 

  • 22.

    Fischer, W. W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44, 647–683 (2016).

    CAS  Article  Google Scholar 

  • 23.

    Kulp, T. R. et al. Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science 321, 967–970 (2008).

    CAS  Article  Google Scholar 

  • 24.

    Hoeft, S. E., Kulp, T. R., Han, S. Lanoil, B. & Oremland, R. S. Coupled arsenotrophy in a hot spring photosynthetic biofilm at Mono Lake, California. Appl. Environ. Microbiol. 76, 4633–4639 (2010).

    CAS  Article  Google Scholar 

  • 25.

    McCann, S. H. et al. Arsenite as an electron donor for anoxygenic photosynthesis: description of three strains of Ectothiorhodospira from Mono Lake, California and Big Soda Lake, Nevada. Life 7, 1, https://doi.org/10.3390/life7010001 (2017).

    CAS  Article  Google Scholar 

  • 26.

    Oremland, R. S., Saltikov, C. W., Wolfe-Simon, F. & Stolz, J. F. Arsenic in the evolution of earth and extraterrestrial ecosystems. Geomicrobiol. J. 26, 522–536 (2009).

    CAS  Article  Google Scholar 

  • 27.

    Fru, E. C. et al. The rise of oxygen-driven arsenic cycling at ca. 2.48 Ga. Geology 47, 243–246 (2019).

    CAS  Article  Google Scholar 

  • 28.

    Sforna, M. C. et al. Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago. Nat. Geosci. 7, 811–815 (2014).

    CAS  Article  Google Scholar 

  • 29.

    Van Lis, R., Nitschke, W., Duval, S. & Schoepp-Cothenet, B. Arsenics as bioenergetic substrates. Biochim. Biophys. Acta 1827, 176–188 (2013).

    Article  CAS  Google Scholar 

  • 30.

    Oremland, R. S. & Stolz, J. F. Arsenic, microbes and contaminated aquifers. Trends Microbiol. 13, 45–49 (2005).

    CAS  Article  Google Scholar 

  • 31.

    Oremland, R. S. et al. A microbial arsenic cycle in a salt-saturated extreme environment. Science 308, 1305–1308 (2005).

    CAS  Article  Google Scholar 

  • 32.

    Zhu, X. et al. Secondary minerals of weathered orpiment–realgar- bearing tailings in Shimen carbonate-type realgar mine, Changde, Central China. Mineral. Petrol. 109, 1–15 (2013).

    Article  CAS  Google Scholar 

  • 33.

    Amend, J., Saltikov, C., Lu, G.-S. & Hernandez, J. Microbial arsenic metabolism and reaction energetics. Rev. Mineral. Geochem. 79, 391–433 (2014).

    Article  Google Scholar 

  • 34.

    Oremland, R. S., Saltikov, C. W., Stolz, J. F. & Hollibaugh, J. T. Autotrophic microbial arsenotrophy in arsenic-rich soda lakes. FEMS Microbiol. Lett. 364, fnx146, https://doi.org/10.1093/femsle/fnx146 (2017).

    CAS  Article  Google Scholar 

  • 35.

    Saunders, J. K., Fuchsman, C. A., McKay, C. & Rocap, G. Complete arsenic-based respiratory cycle in the marine microbial communities of pelagic oxygen-deficient zones. Proc. Natl Acad. Sci. USA 116, 9925–9930 (2019).

    CAS  Article  Google Scholar 

  • 36.

    Hu, S.-Y. et al. Life on the edge: microbial biomineralization in an arsenic- and lead-rich deep-sea hydrothermal vent. Chem. Geol. 533, 119438 (2020).

    Article  CAS  Google Scholar 

  • 37.

    Ilyaletdinov, A. N. & Abdrashitova, S. A. Autotrophic oxidation of arsenic by a culture of Pseudomonas arsenioxidans. Mikrobiologiya 50, 135–140 (1981).

    Google Scholar 

  • 38.

    Oremland, R. S. et al. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative chemoautotroph, strain MLHE-1. Appl. Environ. Microbiol. 68, 4795–4802 (2002).

    CAS  Article  Google Scholar 

  • 39.

    Newman, D. K., Ahmann, D. & Morel, F. M. M. A brief review of microbial arsenate respiration. Geomicrobiol. J. 15, 255–268 (1998).

    CAS  Article  Google Scholar 

  • 40.

    Hartley, A. J., Chong, G., Houston, J. & Mather, A. E. 50 million years of climatic stability: evidence from the Atacama Desert, northern Chile. J. Geol. Soc. Lond. 162, 421–424 (2005).

    Article  Google Scholar 

  • 41.

    Farias, M. E. et al. Characterization of bacterial diversity associated with microbial mats, gypsum evaporites, and carbonate microbialites in thalassic wetlands: Tebenquiche and Brava, Salar de Atacama, Chile. Extremophiles 18, 311–329 (2014).

    CAS  Article  Google Scholar 

  • 42.

    Farias, M. E. et al. Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama, Chile. PLoS ONE 2, e0186867 (2017).

    Article  CAS  Google Scholar 

  • 43.

    Sancho-Tomás, M. et al. Distribution, redox and (bio)geochemical implications of arsenic in living microbial mats of Laguna Brava, Salar de Atacama. Chem. Geol. 490, 13–21 (2018).

    Article  CAS  Google Scholar 

  • 44.

    Deruelle, B. Petrology of the plio-quaternary volcanism of the South-Central and Meridional Andes. J. Volcanol. Geotherm. Res. 14, 77–124 (1982).

    CAS  Article  Google Scholar 

  • 45.

    Green, O. Field staining techniques for determining calcite, dolomite and phosphate. In A Manual of Practical Laboratory and Field Techniques in Palaeobiology. 55–58 (Springer, Dordrecht, 2001).

  • 46.

    Saona, L. A. et al. Analysis of co-regulated abundance of genes associated with arsenic and phosphate metabolism in Andean Microbial Ecosystems. https://doi.org/10.1101/870428 (2019).

  • 47.

    Stüeken, E. E. et al. Environmental niches and metabolic diversity in Neoarchean lakes. Geobiology 15, 767–783 (2017).

    Article  CAS  Google Scholar 

  • 48.

    Flannery, D. T. & Walter, M. R. Archean tufted microbial mats and the Great Oxidation Event: new insights into an ancient problem. Austral. J. Earth Sci. 59, 1–11 (2012).

    CAS  Article  Google Scholar 

  • 49.

    Coffey, J. M., Flannery, D. T., Walter, M. R. & George, S. C. Sedimentology, stratigraphy and geochemistry of a stromatolite biofacies in the 2.72 Ga Tumbiana Formation, Fortescue Group, Western Australia. Precam. Res. 236, 282–296 (2013).

    CAS  Article  Google Scholar 

  • 50.

    Awramik, S. M. & Buchheim, H. P. A giant, Late Archean lake system: the Mentheena Member (Tumbiana Formation; Fortescue Group), Western Australia. Precambrian Res. 174, 215–240 (2009).

    CAS  Article  Google Scholar 

  • 51.

    Van Kranendonk, M. J., Webb, G. E. & Kamber, B. S. Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. Geobiology 1, 91–108 (2003).

    Article  Google Scholar 

  • 52.

    Bolhar, R. & van Kranendonk, M. J. A non-marine depositional setting, for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Res. 155, 229–250 (2007).

    CAS  Article  Google Scholar 

  • 53.

    Stüeken, E. E., Buick, R. & Schauer, A. Nitrogen isotope evidence for alkaline lakes on late Archean continents. Earth Planet. Sci. Lett. 411, 1–10 (2015).

    Article  CAS  Google Scholar 

  • 54.

    Hinrichs, K. Microbial fixation of methane carbon at 2.7 Ga; was an anaerobic mechanism possible? Geochem. Geophys. 3, 1–10 (2002).

    Article  Google Scholar 

  • 55.

    Lepot, K., Benzerara, K., Brown, G. E. Jr & Philippot, P. (2008) Microbially influenced formation of 2,724-million-year-old stromatolites. Nat. Geosci. 1, 118–121 (2008).

    CAS  Article  Google Scholar 

  • 56.

    Lepot, K. et al. Organic matter heterogeneities in 2.72 Ga stromatolites: Alteration versus preservation by sulfur incorporation. Geochim. Cosmochim. Acta 73, 6579–6599 (2009).

    CAS  Article  Google Scholar 

  • 57.

    Stüeken, E. E., Catling, D. C. & Buick, R. Archean sulphur cycling by life on land. Nat. Geosci. 5, 722–725 (2012).

    Article  CAS  Google Scholar 

  • 58.

    Marin-Carbonne, J. et al. Sulfur isotope’s signal of nanopyrites enclosed in 2.7 Ga stromatolitic organic remains reveal microbial sulfate reduction. Geobiolology 16, 121–138 (2017).

    Article  CAS  Google Scholar 

  • 59.

    Buick, R. The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255, 74–77 (1992).

    CAS  Article  Google Scholar 

  • 60.

    Pavlov, A. A., Brown, L. L. & Kasting, J. F. UV shielding of NH3 and O2 by organic hazes in the Archean atmosphere. J. Geophys. Res. 106, 267–288 (2001).

    Google Scholar 

  • 61.

    Claire, M. W. et al. The evolution of solar flux from 0.1 nm to 160 μm: quantitative estimates for planetary studies. Astrophys. J. 757, 95. (12pp). (2012).

    Article  Google Scholar 

  • 62.

    Cockell, C. S. & Raven, J. A. Ozone and life on the Archean Earth. Philos. Trans. R. Soc. A 365, 1889–1901 (2007).

    CAS  Article  Google Scholar 

  • 63.

    Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).

    Article  Google Scholar 

  • 64.

    Risacher, F., Alonso, H. & Salazar, C. The origin of brines and salts in Chilean salars: a hydrochemical review. Earth-Sci. Rev. 63, 249–293 (2003).

    CAS  Article  Google Scholar 

  • 65.

    Arrigada, C., Roperch, P., Mpodozis, C. & Fernandez, R. Paleomagnetism and tectonics of the southern Atacama Desert (25–28° S), northern Chile. Tectonics 25, TC4001 (2006).

    Google Scholar 

  • 66.

    Fernandez, A. B. et al. Microbial diversity in sediment ecosystems (evaporites, domes, microbial mats, and crusts) of hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Front. Microbiol. 7, 1284 (2016).

    Article  Google Scholar 

  • 67.

    Corenthal, L. G., Boutt, D. F., Hynek, S. A. & Munk, L. A. Regional groundwater flow and accumulation of a massive evaporite deposit at the margin of the Chilean Altiplano. J. Geophys. Res. 43, 8017–8025 (2016).

    Google Scholar 

  • 68.

    Tapia, J. et al. Geology and geochemistry of the Atacama Desert. Ant. Leeuw. 111, 1273–1291 (2018).

    CAS  Article  Google Scholar 

  • 69.

    Rasuk, M. C., P. T. Visscher, M. Contreras, M. E. Farias. Mats and microbialites from Laguna La Brava. In Extremophile microbial ecosystems in Central Andes Extreme Environments: Biofilms Microbial, Mats, Microbialites and Endoevaporites. (ed. Farias, M. E.) (Springer Verlag, 2020) https://doi.org/10.1007/978-3-030-36192-1.

  • 70.

    Millero, F. J. The thermodynamics and kinetics of the hydrogen sulfide in natural waters. Mar. Chem. 18, 121–147 (1986).

    CAS  Article  Google Scholar 

  • 71.

    Kondratieva, E. N., Zhukov, V. G., Ivanovsky, R. N., Petushkova, Y. P. & Monosov, E. Z. The capacity of the phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch. Microbiol. 108, 287–292 (1976).

    CAS  Article  Google Scholar 

  • 72.

    Megonigal, J. P., Hines, M. E. & Visscher, P. T. Anaerobic metabolism and production of trace gases. In Treatise on Geochemistry, Vol. 8. (eds Holland, H.D. & Turekian, K. K.) 317–424 (Elsevier, The Netherlands, 2003).

  • 73.

    Gallagher, K. L., Kading, T. J., Braissant, O., Dupraz, C. & Visscher, P. T. Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate reducing bacteria. Geobiology 10, 518–530 (2012).

    CAS  Article  Google Scholar 

  • 74.

    Stumm, W. & Morgan, J. J. Chemical equilibria and rates in natural waters. 3rd edn. 1040 (John Wiley, New York, 1995).

  • 75.

    Franz, C. M., Petryshyn, V. A. & Corsetti, F. A. Grain trapping by filamentous cyanobacterial and algal mats: implications for stromatolite microfabrics through time. Geobiology 13, 409–423 (2015).

    Article  Google Scholar 

  • 76.

    McCann, S. H. et al. Arsenite as an electron donor for anoxygenic photosynthesis: description of three strains of Ectothiorhodospira from Mono Lake, California and Big Soda Lake, Nevada. Life 7, 1, https://doi.org/10.3390/life7010001 (2016).

    CAS  Article  Google Scholar 

  • 77.

    Hoeft, S. E. et al. Alkalilimnicola ehrlichii sp. nov., a novel, arsenite- oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int. J. Syst. Evol. Microbiol. 57, 504–512 (2007).

    CAS  Article  Google Scholar 

  • 78.

    Zerkle, A. L. & Mikhail, S. The geobiological nitrogen cycle: from microbes to the mantle. Geobiology 15, 343–352 (2017).

    CAS  Article  Google Scholar 

  • 79.

    Wong, H. L. et al. Disentangling the drivers of functional complexity at the metagenomic level in Shark Bay microbial mat microbiomes. ISME J. https://doi.org/10.1038/s41396-018-0208-8 (2018).

  • 80.

    Poulton, S. W., Fralick, P. W. & Canfield, D. E. The transition to a sulphidic ocean ~1.84 billion years ago. Nature 431, 173–177 (2004).

    CAS  Article  Google Scholar 

  • 81.

    Kral, T. A., Brink, K. M., Miller, S. L. & McKay, C. P. Hydrogen consumption by methanogens on the early Earth. Org. Life Evol. Biosph. 28, 311–319 (1998).

    CAS  Article  Google Scholar 

  • 82.

    Vignais, P. M. & Biloud, B. Occurrence, classification and biological function of hydrogenases: an overview. Chem. Rev. 107, 4206–4272 (2007).

    CAS  Article  Google Scholar 

  • 83.

    Ward, L. M., Rasmussen, B. & Fischer, W. W. Primary productivity was limited by electron donors prior to the advent of oxygenic photosynthesis. J. Geophys. Res. Biogeosci. 124, 211–226 (2019).

    CAS  Article  Google Scholar 

  • 84.

    Czaja, A. D. et al. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland). Earth Planet. Sci. Lett. 363, 192–203 (2013).

    CAS  Article  Google Scholar 

  • 85.

    Tice, M. M. & Lowe, D. R. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431, 549–552 (2004).

    CAS  Article  Google Scholar 

  • 86.

    Halama, M., Swanner, E. D., Konhauser, K. O. & Kappler, A. Evaluation of siderite and magnetite formation in BIFs by pressure-temperature experiments of Fe(III) minerals and microbial biomass. Earth Planet. Sci. Lett. 450, 243–253 (2016).

    CAS  Article  Google Scholar 

  • 87.

    Martin, W. F., Bryant, D. A. & Beatty, J. T. A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiol. Rev. 42, 205–231 (2018).

    CAS  Article  Google Scholar 

  • 88.

    Duda, J. P. et al. A rare glimpse of paleoarchean life: geobiology of an exceptionally preserved microbial mat facies from the 3.4 Ga Strelley Pool Formation, Western Australia. PLoS ONE 11, e0147629 (2016).

    Article  CAS  Google Scholar 

  • 89.

    Fru, C. et al. Arsenic stress after Proterozoic glaciations. Sci. Rep. 5, 17789 (2015).

    Article  CAS  Google Scholar 

  • 90.

    Miralles-Robledillo, J. M., Torregrosa, J., Martinez-Espinosa, R. M. & Pire, C. DMSO reductase family: phylogenetics and applications of extremophiles. Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20133349 (2019).

  • 91.

    Dupraz, C., Fowler, A., Tobias, C. & Visscher, P. T. Stromatolitic knobs in Storr’s Lake (San Salvador, Bahamas): a model system for formation and alteration of laminae. Geobiology 11, 527–548 (2013).

    CAS  Article  Google Scholar 

  • 92.

    Pace, A. et al. Formation of stromatolite lamina at the interface of oxygenic-anoxygenic photosynthesis. Geobiology 16, 378–398 (2018).

    CAS  Article  Google Scholar 

  • 93.

    Mitchell, M. K. & Stapp, W. Field manual for water quality monitoring. 5th edn. (Thomson Shore Printers, Dexter, MI, 1986).

  • 94.

    Stal, L. J., van Gemerden, H. & Krumbein, W. E. The simultaneous assay of chlorophyll and bacteriochlorophyll in natural microbial communities. J. Microbiol. Methods 2, 295–306 (1984).

    CAS  Article  Google Scholar 

  • 95.

    Visscher, P. T., Beukema, J. & van Gemerden, H. In situ characterization of sediments: Measurements of oxygen and sulfide profiles with a novel combined needle electrode. Limnol. Oceanogr. 36, 1476–1480 (1991).

    CAS  Article  Google Scholar 

  • 96.

    Pagès, A. et al. Diel fluctuations in solute distributions and biogeochemical cycling in a hypersaline microbial mat from Shark Bay, WA. Mar. Chem. 167, 102–112 (2014).

    Article  CAS  Google Scholar 

  • 97.

    Visscher, P. T. et al. Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling. Am. Mineral. 83, 1482–1494 (1998).

    CAS  Article  Google Scholar 

  • 98.

    Epping, H. G., Khalili, A. & Thar, R. Photosynthesis and the dynamics of oxygen consumption in a microbial mat as calculated from transient oxygen microprofiles. Limnol. Oceanogr. 44, 1936–1948 (1999).

    Article  Google Scholar 

  • 99.

    Bednar, A. J., Garbino, J. R., Ranville, J. F. & Wildeman, T. R. Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples. Environ. Sci. Technol. 36, 2213–2218 (2002).

    CAS  Article  Google Scholar 

  • 100.

    Somogyi, A. et al. Optical design and multi-length-scale scanning spectro-microscopy possibilities at the Nanoscopium beamline of synchrotron Soleil. J. Synchrotron. Radiat. 22, 1118–1129 (2015).

    CAS  Article  Google Scholar 

  • 101.

    Visscher, P. T. et al. Dimethyl sulfide and methanethiol formation in microbial mats: Potential pathways for biogenic signatures. Environ. Microbiol. 5, 296–308 (2003).

    CAS  Article  Google Scholar 

  • 102.

    Kurth, D. et al. Arsenic metabolism in high altitude modern stromatolites revealed by metagenomic analysis. Sci. Rep. 7, 1024 (2017).

    Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Evaluating battery revenues for offshore wind farms using advanced modeling

    Phytoliths in selected broad-leaved trees in China