in

Multiple interacting environmental drivers reduce the impact of solar UVR on primary productivity in Mediterranean lakes

  • 1.

    Karl, D. M. Solar energy capture and transformation in the sea. Elementa Sci. Anthrop. 2, 000021 (2013).

    Article  Google Scholar 

  • 2.

    Kirk, J. T. O. The vertical attenuation of irradiance as a function of the optical properties of the water. Limnol. Oceanogr. 48, 9–17 (2003).

    ADS  Article  Google Scholar 

  • 3.

    Mladenov, N. et al. Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes. Nat. Commun. 2, 405 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Brahney, J., Mahowald, N., Ward, D. S., Ballantyne, A. P. & Neff, J. C. Is atmospheric phosphorus pollution altering global alpine Lake stoichiometry?. Glob. Biogeochem. Cycles 29, GB5137 (2015).

    Article  CAS  Google Scholar 

  • 5.

    Goudie, A. Human Impact on the Natural Environment: Past, Present and Future 8th edn. (Wiley, New York, 2019).

    Google Scholar 

  • 6.

    Stockwell, J. D. et al. Storm impacts on phytoplankton community dynamics in lakes. Glob. Change Biol. 26, 2756–2784 (2020).

    ADS  Article  Google Scholar 

  • 7.

    Beardall, J., Sobrino, C. & Stojkovic, S. Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers. Photochem. Photobiol. Sci. 8, 1257–1265 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    Gao, K., Zhang, Y. & Häder, D.-P. Individual and interactive effects of ocean acidification, global warming, and UV radiation on phytoplankton. J. Appl. Phycol. 30, 743–759 (2018).

    CAS  Article  Google Scholar 

  • 9.

    Brennan, G. & Collins, S. Growth responses of a green alga to multiple environmental drivers. Nat. Clim. Change 5, 892–897 (2015).

    ADS  Article  Google Scholar 

  • 10.

    Jackson, M. C., Loewen, C. J. G., Vinebrooke, R. D. & Chimimba, C. T. Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. Glob. Change Biol. 22, 180–189 (2016).

    ADS  Article  Google Scholar 

  • 11.

    Van de Waal, D. B. & Litchman, E. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190706 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Winston, B., Scott, J. T. & Pollock, E. The synergistic effect of elevated CO2 and phosphorus on reservoir eutrophication. Lake Reservoir Manag. 32, 373–385 (2016).

    CAS  Article  Google Scholar 

  • 13.

    Villar-Argaiz, M. et al. Growth impacts of Saharan dust, mineral nutrients, and CO2 on a planktonic herbivore in southern Mediterranean lakes. Sci. Total Environ. 639, 118–128 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 14.

    Carrillo, P., Delgado-Molina, J. A., Medina-Sánchez, J. M., Bullejos, F. J. & Villar-Argaiz, M. Phosphorus inputs unmask negative effects of ultraviolet radiation on algae in a high mountain lake. Glob. Change Biol. 14, 423–439 (2008).

    ADS  Article  Google Scholar 

  • 15.

    Edwards, K. F., Thomas, M. K., Klausmeier, C. A. & Litchman, E. Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnol. Oceanogr. 61, 1232–1244 (2016).

    ADS  Article  Google Scholar 

  • 16.

    Belarde, T. A. & Railsback, S. F. New predictions from old theory: Emergent effects of multiple stressors in a model of piscivorous fish. Ecol. Model. 326, 54–62 (2016).

    Article  Google Scholar 

  • 17.

    Carrillo, P. et al. Vulnerability of mixotrophic algae to nutrient pulses and UVR in an oligotrophic Southern and Northern Hemisphere lake. Sci. Rep. 7, 6333 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Helbling, E. W. et al. Interactive effects of vertical mixing, nutrients and ultraviolet radiation: In situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe. Biogeosciences 10, 1037–1050 (2013).

    ADS  Article  Google Scholar 

  • 19.

    Verpoorter, C. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).

    ADS  Article  Google Scholar 

  • 20.

    Downing, J. Emerging global role of small lakes and ponds: Little things mean a lot. Limnetica 29, 9–24 (2010).

    Google Scholar 

  • 21.

    Mendonça, R. et al. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 8, 1694 (2018).

    ADS  Article  CAS  Google Scholar 

  • 22.

    Hilt, S., Brothers, S., Jeppesen, E., Veraart, A. J. & Kosten, S. Translating regime shifts in shallow lakes into changes in ecosystem functions and services. Bioscience 67, 928–936 (2017).

    Article  Google Scholar 

  • 23.

    Helbling, E. W., Banaszak, A. T. & Villafañe, V. E. Global change feed-back inhibits cyanobacterial photosynthesis. Sci. Rep. 5, 14514 (2015).

    ADS  Article  CAS  Google Scholar 

  • 24.

    Villafañe, V. E. et al. Dual role of DOM in a scenario of global change on photosynthesis and structure of coastal phytoplankton from the South Atlantic Ocean. Sci. Total Environ. 634, 1352–1361 (2018).

    ADS  Article  CAS  PubMed  Google Scholar 

  • 25.

    Williamson, C. E. et al. The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochem. Photobiol. Sci. 18, 717–746 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 26.

    Sanders, R. W. et al. Shifts in microbial food web structure and productivity after additions of naturally occurring dissolved organic matter: Results from large-scale lacustrine mesocosms. Limnol. Oceanogr. 60, 2130–2144 (2015).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Williamson, C. E. et al. Solar ultraviolet radiation in a changing climate. Nat. Clim. Change 4, 434–441 (2014).

    ADS  Article  Google Scholar 

  • 28.

    Ayoub, L. M., Hallock, P., Coble, P. G. & Bell, S. S. MAA-like absorbing substances in Florida Keys phytoplankton vary with distance from shore and CDOM: Implications for coral reefs. J. Exp. Mar. Biol. Ecol. 420–421, 91–98 (2012).

    Article  CAS  Google Scholar 

  • 29.

    Häder, D. P., Villafañe, V. E. & Helbling, E. W. Productivity of aquatic primary producers under global climate change. Photochem. Photobiol. Sci. 13, 1370–1392 (2014).

    Article  CAS  PubMed  Google Scholar 

  • 30.

    IPCC. Climate Change. The Physical Science Basis 1–1535 (Cambridge University Press, New York, 2013).

    Google Scholar 

  • 31.

    Llewellyn, C. A. & Airs, R. L. Distribution and abundance of MAAs in 33 species of microalgae across 13 classes. Mar. Drugs 8, 1273–1291 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Buma, A. G. J. et al. Wavelength-dependent xanthophyll cycle activity in marine microalgae exposed to natural ultraviolet radiation. Eur. J. Phycol. 44, 515–524 (2009).

    CAS  Article  Google Scholar 

  • 33.

    Graham, P. J., Nguyen, B., Burdyny, T. & Sinton, D. A penalty on photosynthetic growth in fluctuating light. Sci. Rep. 7, 12513. https://doi.org/10.1038/s41598-017-12923-1 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Vialet-Chabrand, S. R. M., Matthews, J. S. A., Simjin, A., Raines, C. A. & Lawson, T. Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiol. 173, 2163–2179 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Behrenfeld, M. J., Halsey, K. H. & Milligan, A. J. Evolved physiological responses of phytoplankton to their integrated growth environment. Philos. Trans. R. Soc. Lond B Biol. Sci. 363, 2687–2703 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Bamstedt, U. Productivity related to ambient photon flux for phytoplankton communities under different turbid conditions. Hydrobiologia 837, 109–115 (2019).

    Article  Google Scholar 

  • 37.

    Vinebrooke, R. D. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: The role of species co-tolerance. Oikos 104, 451–457 (2004).

    Article  Google Scholar 

  • 38.

    Lin, H. et al. Phytoplankton: The fate of photons absorbed by phytoplankton in the global ocean. Science 351, 264–267 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 39.

    Falkowski, P. G., Lin, H. & Gorbunov, M. Y. What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans. Phylos. Trans. R. Soc. B Biol. Sci. 372, 20160376 (2017).

    Article  CAS  Google Scholar 

  • 40.

    Sinistro, R. et al. Responses of phytoplankton and related microbial communities to changes in the limnological conditions of shallow lakes: A short-term cross-transplant experiment. Hydrobiologia 752, 139–153 (2015).

    CAS  Article  Google Scholar 

  • 41.

    González-Olalla, J. M., Medina-Sánchez, J. M., Lozano, I. L., Villar-Argaiz, M. & Carrillo, P. Climate-driven shifts in algal-bacterial interaction of highmountain lakes in two years spanning a decade. Sci. Rep. 8, 10278 (2018).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Rojo, C. et al. Are the small-sized plankton communities of oligotrophic ecosystems resilient to UVR and P pulses?. Freshw. Sci. 36, 760–773 (2017).

    Article  Google Scholar 

  • 43.

    Medina-Sánchez, J. M., Delgado-Molina, J. A., Bratbak, G., Bullejos, F. J. & Carrillo, P. Maximum in the middle: Nonlinear response of microbial plankton to ultraviolet radiation and phosphorus. PLoS ONE 8, e60223 (2013).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Cabrerizo, M. J., Medina-Sánchez, J. M., Dorado-García, I., Villar-Argaiz, M. & Carrillo, P. Rising nutrient-pulse frequency and high UVR strengthen microbial interactions. Sci. Rep. 7, 43615 (2017).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Carrillo, P. et al. Synergistic effects of UVR and simulated stratification on commensalistic algal-bacterial relationship in two optically contrasting oligotrophic Mediterranean lakes. Biogeosciences 12, 697–712 (2015).

    ADS  Article  Google Scholar 

  • 46.

    Durán, C., Medina-Sánchez, J. M., Herrera, G. & Carrillo, P. Changes in the phytoplankton-bacteria coupling triggered by joint action of UVR, nutrients, and warming in Mediterranean high-mountain lakes. Limnol. Oceanogr. 61, 413–429 (2016).

    ADS  Article  CAS  Google Scholar 

  • 47.

    Durán-Romero, C., Medina-Sánchez, J. M. & Carrillo, P. Uncoupled phytoplankton-bacterioplankton relationship by multiple drivers interacting at different temporal scales in a high-mountain Mediterranean lake. Sci. Rep. 10, 350 (2020).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    APHA. Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, 2017).

    Google Scholar 

  • 49.

    Villafañe, V. E., Gao, K., Li, P. & Helbling, E. W. Vertical mixing within the epilimnion modulates UVR-induced photoinhibition in tropical freshwater phytoplankton from southern China. Freshw. Biol. 52, 1260–1270 (2007).

    Article  CAS  Google Scholar 

  • 50.

    Morales-Baquero, R., Pulido-Villena, E. & Reche, I. Atmospheric inputs of phosphorus and nitrogen to the southwest Mediterranean region: Biogeochemical responses of high mountain lakes. Limnol. Oceanogr. 51, 830–837 (2006).

    ADS  CAS  Article  Google Scholar 

  • 51.

    Benner, R. & Strom, M. A critical evaluation of the analytical blank associated with DOC measurements by high-temperature catalytic oxidation. Mar. Chem. 41, 153–160 (1993).

    CAS  Article  Google Scholar 

  • 52.

    Utermöhl, H. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Internationale Vereinigung fur Theoretische und Angewandte Limnologie 9, 1–38 (1958).

    Google Scholar 

  • 53.

    Steemann Nielsen, E. The use of radio-active carbon (C14) for measuring organic production in the sea. ICES J. Mar. Sci. 18, 117–140 (1952).

    Article  Google Scholar 

  • 54.

    Harvey, B. P., Gwynn-Jones, D. & Moore, P. J. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol. 3, 1016–1030 (2013).

    Article  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Researchers using environmental DNA must engage ethically with Indigenous communities

    Commercializing next-generation nuclear energy technology