in

Multiple interacting environmental drivers reduce the impact of solar UVR on primary productivity in Mediterranean lakes

  • 1.

    Karl, D. M. Solar energy capture and transformation in the sea. Elementa Sci. Anthrop. 2, 000021 (2013).

    Article  Google Scholar 

  • 2.

    Kirk, J. T. O. The vertical attenuation of irradiance as a function of the optical properties of the water. Limnol. Oceanogr. 48, 9–17 (2003).

    ADS  Article  Google Scholar 

  • 3.

    Mladenov, N. et al. Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes. Nat. Commun. 2, 405 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Brahney, J., Mahowald, N., Ward, D. S., Ballantyne, A. P. & Neff, J. C. Is atmospheric phosphorus pollution altering global alpine Lake stoichiometry?. Glob. Biogeochem. Cycles 29, GB5137 (2015).

    Article  CAS  Google Scholar 

  • 5.

    Goudie, A. Human Impact on the Natural Environment: Past, Present and Future 8th edn. (Wiley, New York, 2019).

    Google Scholar 

  • 6.

    Stockwell, J. D. et al. Storm impacts on phytoplankton community dynamics in lakes. Glob. Change Biol. 26, 2756–2784 (2020).

    ADS  Article  Google Scholar 

  • 7.

    Beardall, J., Sobrino, C. & Stojkovic, S. Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers. Photochem. Photobiol. Sci. 8, 1257–1265 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    Gao, K., Zhang, Y. & Häder, D.-P. Individual and interactive effects of ocean acidification, global warming, and UV radiation on phytoplankton. J. Appl. Phycol. 30, 743–759 (2018).

    CAS  Article  Google Scholar 

  • 9.

    Brennan, G. & Collins, S. Growth responses of a green alga to multiple environmental drivers. Nat. Clim. Change 5, 892–897 (2015).

    ADS  Article  Google Scholar 

  • 10.

    Jackson, M. C., Loewen, C. J. G., Vinebrooke, R. D. & Chimimba, C. T. Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. Glob. Change Biol. 22, 180–189 (2016).

    ADS  Article  Google Scholar 

  • 11.

    Van de Waal, D. B. & Litchman, E. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190706 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Winston, B., Scott, J. T. & Pollock, E. The synergistic effect of elevated CO2 and phosphorus on reservoir eutrophication. Lake Reservoir Manag. 32, 373–385 (2016).

    CAS  Article  Google Scholar 

  • 13.

    Villar-Argaiz, M. et al. Growth impacts of Saharan dust, mineral nutrients, and CO2 on a planktonic herbivore in southern Mediterranean lakes. Sci. Total Environ. 639, 118–128 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 14.

    Carrillo, P., Delgado-Molina, J. A., Medina-Sánchez, J. M., Bullejos, F. J. & Villar-Argaiz, M. Phosphorus inputs unmask negative effects of ultraviolet radiation on algae in a high mountain lake. Glob. Change Biol. 14, 423–439 (2008).

    ADS  Article  Google Scholar 

  • 15.

    Edwards, K. F., Thomas, M. K., Klausmeier, C. A. & Litchman, E. Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnol. Oceanogr. 61, 1232–1244 (2016).

    ADS  Article  Google Scholar 

  • 16.

    Belarde, T. A. & Railsback, S. F. New predictions from old theory: Emergent effects of multiple stressors in a model of piscivorous fish. Ecol. Model. 326, 54–62 (2016).

    Article  Google Scholar 

  • 17.

    Carrillo, P. et al. Vulnerability of mixotrophic algae to nutrient pulses and UVR in an oligotrophic Southern and Northern Hemisphere lake. Sci. Rep. 7, 6333 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Helbling, E. W. et al. Interactive effects of vertical mixing, nutrients and ultraviolet radiation: In situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe. Biogeosciences 10, 1037–1050 (2013).

    ADS  Article  Google Scholar 

  • 19.

    Verpoorter, C. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).

    ADS  Article  Google Scholar 

  • 20.

    Downing, J. Emerging global role of small lakes and ponds: Little things mean a lot. Limnetica 29, 9–24 (2010).

    Google Scholar 

  • 21.

    Mendonça, R. et al. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 8, 1694 (2018).

    ADS  Article  CAS  Google Scholar 

  • 22.

    Hilt, S., Brothers, S., Jeppesen, E., Veraart, A. J. & Kosten, S. Translating regime shifts in shallow lakes into changes in ecosystem functions and services. Bioscience 67, 928–936 (2017).

    Article  Google Scholar 

  • 23.

    Helbling, E. W., Banaszak, A. T. & Villafañe, V. E. Global change feed-back inhibits cyanobacterial photosynthesis. Sci. Rep. 5, 14514 (2015).

    ADS  Article  CAS  Google Scholar 

  • 24.

    Villafañe, V. E. et al. Dual role of DOM in a scenario of global change on photosynthesis and structure of coastal phytoplankton from the South Atlantic Ocean. Sci. Total Environ. 634, 1352–1361 (2018).

    ADS  Article  CAS  PubMed  Google Scholar 

  • 25.

    Williamson, C. E. et al. The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochem. Photobiol. Sci. 18, 717–746 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 26.

    Sanders, R. W. et al. Shifts in microbial food web structure and productivity after additions of naturally occurring dissolved organic matter: Results from large-scale lacustrine mesocosms. Limnol. Oceanogr. 60, 2130–2144 (2015).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Williamson, C. E. et al. Solar ultraviolet radiation in a changing climate. Nat. Clim. Change 4, 434–441 (2014).

    ADS  Article  Google Scholar 

  • 28.

    Ayoub, L. M., Hallock, P., Coble, P. G. & Bell, S. S. MAA-like absorbing substances in Florida Keys phytoplankton vary with distance from shore and CDOM: Implications for coral reefs. J. Exp. Mar. Biol. Ecol. 420–421, 91–98 (2012).

    Article  CAS  Google Scholar 

  • 29.

    Häder, D. P., Villafañe, V. E. & Helbling, E. W. Productivity of aquatic primary producers under global climate change. Photochem. Photobiol. Sci. 13, 1370–1392 (2014).

    Article  CAS  PubMed  Google Scholar 

  • 30.

    IPCC. Climate Change. The Physical Science Basis 1–1535 (Cambridge University Press, New York, 2013).

    Google Scholar 

  • 31.

    Llewellyn, C. A. & Airs, R. L. Distribution and abundance of MAAs in 33 species of microalgae across 13 classes. Mar. Drugs 8, 1273–1291 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Buma, A. G. J. et al. Wavelength-dependent xanthophyll cycle activity in marine microalgae exposed to natural ultraviolet radiation. Eur. J. Phycol. 44, 515–524 (2009).

    CAS  Article  Google Scholar 

  • 33.

    Graham, P. J., Nguyen, B., Burdyny, T. & Sinton, D. A penalty on photosynthetic growth in fluctuating light. Sci. Rep. 7, 12513. https://doi.org/10.1038/s41598-017-12923-1 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Vialet-Chabrand, S. R. M., Matthews, J. S. A., Simjin, A., Raines, C. A. & Lawson, T. Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiol. 173, 2163–2179 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Behrenfeld, M. J., Halsey, K. H. & Milligan, A. J. Evolved physiological responses of phytoplankton to their integrated growth environment. Philos. Trans. R. Soc. Lond B Biol. Sci. 363, 2687–2703 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Bamstedt, U. Productivity related to ambient photon flux for phytoplankton communities under different turbid conditions. Hydrobiologia 837, 109–115 (2019).

    Article  Google Scholar 

  • 37.

    Vinebrooke, R. D. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: The role of species co-tolerance. Oikos 104, 451–457 (2004).

    Article  Google Scholar 

  • 38.

    Lin, H. et al. Phytoplankton: The fate of photons absorbed by phytoplankton in the global ocean. Science 351, 264–267 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 39.

    Falkowski, P. G., Lin, H. & Gorbunov, M. Y. What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans. Phylos. Trans. R. Soc. B Biol. Sci. 372, 20160376 (2017).

    Article  CAS  Google Scholar 

  • 40.

    Sinistro, R. et al. Responses of phytoplankton and related microbial communities to changes in the limnological conditions of shallow lakes: A short-term cross-transplant experiment. Hydrobiologia 752, 139–153 (2015).

    CAS  Article  Google Scholar 

  • 41.

    González-Olalla, J. M., Medina-Sánchez, J. M., Lozano, I. L., Villar-Argaiz, M. & Carrillo, P. Climate-driven shifts in algal-bacterial interaction of highmountain lakes in two years spanning a decade. Sci. Rep. 8, 10278 (2018).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Rojo, C. et al. Are the small-sized plankton communities of oligotrophic ecosystems resilient to UVR and P pulses?. Freshw. Sci. 36, 760–773 (2017).

    Article  Google Scholar 

  • 43.

    Medina-Sánchez, J. M., Delgado-Molina, J. A., Bratbak, G., Bullejos, F. J. & Carrillo, P. Maximum in the middle: Nonlinear response of microbial plankton to ultraviolet radiation and phosphorus. PLoS ONE 8, e60223 (2013).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Cabrerizo, M. J., Medina-Sánchez, J. M., Dorado-García, I., Villar-Argaiz, M. & Carrillo, P. Rising nutrient-pulse frequency and high UVR strengthen microbial interactions. Sci. Rep. 7, 43615 (2017).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Carrillo, P. et al. Synergistic effects of UVR and simulated stratification on commensalistic algal-bacterial relationship in two optically contrasting oligotrophic Mediterranean lakes. Biogeosciences 12, 697–712 (2015).

    ADS  Article  Google Scholar 

  • 46.

    Durán, C., Medina-Sánchez, J. M., Herrera, G. & Carrillo, P. Changes in the phytoplankton-bacteria coupling triggered by joint action of UVR, nutrients, and warming in Mediterranean high-mountain lakes. Limnol. Oceanogr. 61, 413–429 (2016).

    ADS  Article  CAS  Google Scholar 

  • 47.

    Durán-Romero, C., Medina-Sánchez, J. M. & Carrillo, P. Uncoupled phytoplankton-bacterioplankton relationship by multiple drivers interacting at different temporal scales in a high-mountain Mediterranean lake. Sci. Rep. 10, 350 (2020).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    APHA. Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, 2017).

    Google Scholar 

  • 49.

    Villafañe, V. E., Gao, K., Li, P. & Helbling, E. W. Vertical mixing within the epilimnion modulates UVR-induced photoinhibition in tropical freshwater phytoplankton from southern China. Freshw. Biol. 52, 1260–1270 (2007).

    Article  CAS  Google Scholar 

  • 50.

    Morales-Baquero, R., Pulido-Villena, E. & Reche, I. Atmospheric inputs of phosphorus and nitrogen to the southwest Mediterranean region: Biogeochemical responses of high mountain lakes. Limnol. Oceanogr. 51, 830–837 (2006).

    ADS  CAS  Article  Google Scholar 

  • 51.

    Benner, R. & Strom, M. A critical evaluation of the analytical blank associated with DOC measurements by high-temperature catalytic oxidation. Mar. Chem. 41, 153–160 (1993).

    CAS  Article  Google Scholar 

  • 52.

    Utermöhl, H. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Internationale Vereinigung fur Theoretische und Angewandte Limnologie 9, 1–38 (1958).

    Google Scholar 

  • 53.

    Steemann Nielsen, E. The use of radio-active carbon (C14) for measuring organic production in the sea. ICES J. Mar. Sci. 18, 117–140 (1952).

    Article  Google Scholar 

  • 54.

    Harvey, B. P., Gwynn-Jones, D. & Moore, P. J. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol. 3, 1016–1030 (2013).

    Article  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    The invasive butterbur contaminates stream and seepage water in groundwater wells with toxic pyrrolizidine alkaloids

    The relative contribution of individual quality and changing climate as drivers of lifetime reproductive success in a short-lived avian species