in

Multiscale consensus habitat modeling for landscape level conservation prioritization

  • 1.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS  Article  Google Scholar 

  • 2.

    Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: the black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).

    Article  Google Scholar 

  • 3.

    Gutierrez, B. L. et al. An island of wildlife in a human-dominated landscape: the last fragment of primary forest on the Osa Peninsula’s Golfo Dulce coastline Costa Rica. PLoS ONE 14, e0214390 (2019).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  • 4.

    Padalia, H. et al. Assessment of historical forest cover loss and fragmentation in Asian elephant ranges in India. Environ. Monit. Assess. 191, 802 (2019).

    Article  Google Scholar 

  • 5.

    Sodhi, N. S., Lee, T. M., Koh, L. P. & Brook, B. W. A meta-analysis of the impact of anthropogenic forest disturbance on Southeast Asia’s biotas. Biotropica 41, 103–109 (2009).

    Article  Google Scholar 

  • 6.

    Beier, P. Determining minimum habitat areas and habitat corridors for cougars. Conserv. Biol. 7, 94–108 (1993).

    Article  Google Scholar 

  • 7.

    MacNally, R. & Bennett, A. F. Species-specific prediction of the impact of habitat fragmentation: local extinction of birds in the box-ironbark forests of central Victoria Australia. Biol. Conserv. 82, 147–155 (1997).

    Article  Google Scholar 

  • 8.

    Hanski, I. Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 8, 209–219 (1999).

    Article  Google Scholar 

  • 9.

    Weaver, J. L., Paquet, P. C. & Ruggerio, L. F. Resilience and conservation of large carnivores in the Rocky Mountains. Conserv. Biol. 10, 964–976 (1996).

    Article  Google Scholar 

  • 10.

    Smith, J. B., Nielsen, C. K. & Hellgren, E. C. Suitable habitat for recolonizing large carnivores in the midwestern USA. Oryx 50, 555–564 (2016).

    Article  Google Scholar 

  • 11.

    Morehouse, A. T., Hughes, C., Manners, N., Bectell, J. & Bruder, T. Carnivores and communities: a case study of human-carnivore conflict mitigation in southwestern Alberta. Front. Ecol. Evol. 8, 2 (2020).

    Article  Google Scholar 

  • 12.

    Pelton, M. R. et al. American black bear conservation action plan in Bears (ed. Servheen, C., Herrero, S., & Peyton, B.) 144–146. Status survey and conservation action plan. (IUCN/SSC Bear and Polar Bear Specialist Groups, 1999).

  • 13.

    Williamson, D. F. In the Black: Status, Management, and Trade of the American Black Bear (Ursus americanus) in North America (TRAFFIC North America. World Wildlife Fund, Washington, DC, 2002).

    Google Scholar 

  • 14.

    Hristienko, H. & McDonald, J. E. Jr. Going into the 21st century: a perspective on trends and controversies in the management of the American black bear. Ursus 18, 72–88 (2007).

    Article  Google Scholar 

  • 15.

    Scheick, B. K. & McCown, W. Geographic distribution of American black bears in North America. Ursus 25, 24–33 (2014).

    Article  Google Scholar 

  • 16.

    Wright, S. Evolution and the genetics of populations (The University of Chicago Press, Chicago, 1984).

    Google Scholar 

  • 17.

    Wooding, J. B. & Hardisky, T. S. Home range, habitat use, and mortality of black bears in north-central Florida. Int. Conf. Bear Res. Manag. 9, 349–356 (1994).

    Google Scholar 

  • 18.

    Florida Game and Fresh Water Fish Commission. Management of the Black Bear in Florida: A Staff Report to the Commissioners (Florida Game and Fresh Water Fish Commission, Tallahassee, 1993).

    Google Scholar 

  • 19.

    Florida Fish and Wildlife Conservation Commission. Florida Black Bear Management Plan (Florida Game and Fresh Water Fish Commission, Tallahassee, 2019).

    Google Scholar 

  • 20.

    Dixon, J. D. Genetic consequences of habitat fragmentation and loss: the case of the Florida black bear (Ursus americanus floridanus). Conserv. Genet. 8, 455–464 (2007).

    Article  Google Scholar 

  • 21.

    Brown, J. H. Challenges in Estimating Size and Conservation of Black Bear in West-Central Florida. Thesis, University of Kentucky (2004)

  • 22.

    Humm, J. M., McCown, J. W., Scheick, B. K. & Clark, J. D. Spatially explicit population estimates for black bears based on cluster sampling. J. Wildl. Manag. 81, 1187–1201 (2017).

    Article  Google Scholar 

  • 23.

    Florida Fish and Wildlife Conservation Commission. Florida Black Bear Management Plan (Florida Game and Fresh Water Fish Commission, Tallahassee, 2012).

    Google Scholar 

  • 24.

    Carr, M. H. & Zwick, P. D. Technical Report Florida 2070: Mapping Florida’s Future—Alternative Patterns of Development in 2070 (Geoplan Center at the University of Florida, Gainesville, 2016).

    Google Scholar 

  • 25.

    Noss, R. E., Quiqley, H. B., Hornocker, M. G., Merrill, T. & Paquet, P. C. Conservation biology and carnivore conservation in the Rocky Mountains. Conserv. Biol. 10, 94–96 (1996).

    Google Scholar 

  • 26.

    Breitenmoser, U. Large predators in the Alps: the fall and rise of man’s competitors. Biol. Conserv. 83, 279–289 (1998).

    Article  Google Scholar 

  • 27.

    Waser, P. M. Patterns and consequences of dispersal in gregarious carnivores. In Carnivore Behavior, Ecology, and Evolution (ed. Gittleman, J. L.) 267–295 (Cornell University Press, Ithaca, 1996).

    Google Scholar 

  • 28.

    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    Article  Google Scholar 

  • 29.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Article  Google Scholar 

  • 30.

    Yackulic, C. B. et al. Presence-only modelling using MAXENT: When can we trust the inferences?. Methods Ecol. Evol. 4, 236–243 (2013).

    Article  Google Scholar 

  • 31.

    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).

    Article  Google Scholar 

  • 32.

    De Oliveira Moreira, D. et al. The distributional ecology of the maned sloth: Environmental influences on its distribution and gaps in knowledge. PLoS ONE. 9, 1–12 (2014).

    Google Scholar 

  • 33.

    Martin, J. et al. Brown bear habitat suitability in the Pyrenees: transferability across sites and linking scales to make the most of scarce data. J. Appl. Ecol. 49, 621–631 (2012).

    Article  Google Scholar 

  • 34.

    Khosravi, R., Hemami, R. K. M. & Cushman, S. A. Multi-scale niche modeling of three sympatric felids of conservation importance in central Iran. Landsc. Ecol. 34, 2451–2467 (2019).

    Article  Google Scholar 

  • 35.

    Maehr, D. S., McCown, J. W., Land, E. D. & Roof, J. C. Southwest Florida Black Bear Habitat Use, Distribution, Movements, and Conservation Strategy (Florida Game and Fresh Water Fish Commission, Gainesville, 1992).

    Google Scholar 

  • 36.

    McCown, W., Kublis, P., Eason, T. & Scheick, B. Black Bear Movements and Habitat Use Relative to Roads in Ocala National Forest (Florida Fish and Wildlife Commission, Gainesville, 2004).

    Google Scholar 

  • 37.

    Dobey, S. Ecology of Florida black bears in the Okefenokee-Osceola ecosystem. Wildl. Monogr. 158, 1–41 (2005).

    Google Scholar 

  • 38.

    Ulrey, W. A. Home Range, Habitat Use, and Food Habits of the Black Bear in South-Central Florida. Thesis, University of Kentucky (2008)

  • 39.

    Karelus, D. L., McCown, J. W., Scheick, B. K., van de Kerk, M. & Oli, M. K. Home ranges and habitat selection by black bears in a newly colonized population in Florida. Southeast Nat. 15, 346–364 (2016).

    Article  Google Scholar 

  • 40.

    Karelus, D. L., McCown, J. W., Scheick, B. K. & Oli, M. K. Microhabitat features influencing habitat use by Florida black bears. Glob. Ecol. Conserv. 13, e00367 (2018).

    Article  Google Scholar 

  • 41.

    Olson, D. M. & Dinerstein, E. The Global 200: Priority ecoregions for global conservation. Ann. MO Bot. Gard. 89, 125–126 (2002).

    Article  Google Scholar 

  • 42.

    U.S. Census Bureau. Population and housing unite estimates vintage 2018. Washington, DC (2018).

  • 43.

    Burby, R. & May, P. Making Governments Plan (John Hopkins University Press, Baltimore, 1997).

    Google Scholar 

  • 44.

    Boarnet, M. G., McLaughlin, R. B. & Carruthers, J. I. Does state growth management change the pattern of urban growth? Evidence from Florida. Reg. Sci. Urban Econ. 41, 236–252 (2011).

    Article  Google Scholar 

  • 45.

    Seibert, S. G. Status and Management of Black Bears in Apalachicola National Forest (Florida Game and Fresh Water Fish Commission, Gainesville, 2013).

    Google Scholar 

  • 46.

    Land, E. D. Southwest Florida Black Bear Habitat Use, Distribution, Movements, and Conservation Strategy (Florida Game and Fresh Water Fish Commission, Tallahassee, 1994).

    Google Scholar 

  • 47.

    McCown, W., Eason, T. H. & Cunningham, M. W. Black Bear Movements and Habitat Use Relative to Roads in Ocala National Forest (Florida Fish and Wildlife Conservation Commission, Gainesville, 2001).

    Google Scholar 

  • 48.

    Stratman, M. R., Alden, C. D., Pelton, M. R. & Sunquist, M. E. Habitat use by American black bears in the sandhills of Florida. Ursus 12, 109–114 (2001).

    Google Scholar 

  • 49.

    Maehr, D. W. et al. Spatial characteristics of an isolated Florida black bear population. Southeast Nat. 2, 433–446 (2003).

    Article  Google Scholar 

  • 50.

    Orlando, M. A. The Ecology and Behavior of an Isolated Black Bear Population in West Central Florida. Thesis, University of Kentucky (2003)

  • 51.

    Annis, K. M. The Impact of Translocation on Nuisance Florida Black Bears. Thesis, University of Florida (2007).

  • 52.

    Neils, A. M. Florida Black Bear (Ursus americanus floridanus) at the Urban-Wildlife Interface: Are They Different? Thesis, University of Florida (2011).

  • 53.

    Guthrie, J. M. Modeling Movement Behavior and Road Crossing the Black Bear of South Central Florida. Thesis, University of Kentucky (2012).

  • 54.

    Baruch-Mordo, S. et al. Stochasticity in natural forage production affects use of urban areas by black bears: implications to management of human-bear conflicts. PLoS ONE 9, e85122 (2014).

    ADS  PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 55.

    Lewis, J. S., Rachlow, J. L., Garton, E. O. & Vierling, L. A. Effects of habitat on GPS collar performance: using data screening to reduce location error. J. Appl. Ecol. 44, 663–671 (2007).

    Article  Google Scholar 

  • 56.

    Clark, J. D., Laufenberg, J. S., Davidson, M. & Murrow, J. L. Connectivity among subpopulations of Louisiana black bears as estimated by a step selection function. J. Wildl. Manage. 79, 1347–1360 (2015).

    Article  Google Scholar 

  • 57.

    Beumer, L. T., van Beest, F. M., Stelvig, M. & Schmidt, N. M. Spatiotemproal dynamics in habitat suitability of a large Arctic herbivore: environmental heterogeneity is key to a sedentary lifestyle. Glob. Ecol. Conserv. 18, e00647 (2019).

    Article  Google Scholar 

  • 58.

    Hinton, J. W. et al. Space use and habitat selection by resident and transient red wolves (Canis rufus). PLoS ONE 11, e0167603 (2016).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 59.

    Fourcade, Y., Engler, J. O., Rodder, D. & Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9, e97122 (2014).

    ADS  PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 60.

    Pellerin, M., Said, S. & Gaillard, J.-M. Roe deer Capreolus capreolus home-range sizes estimated from VHF and GPS data. Wildl. Biol. 14, 101–110 (2009).

    Article  Google Scholar 

  • 61.

    Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).

    PubMed Central  Article  PubMed  Google Scholar 

  • 62.

    Maehr, D. S. & Brady, J. R. Food habits of Florida black bears. J. Wildl. Manag. 48, 230–235 (1984).

    Article  Google Scholar 

  • 63.

    Hellgren, E. C., Vaughan, M. R. & Stauffer, D. F. Macrohabitat use by black bears in a southeastern wetland. J Wildl. Manag. 55, 442–448 (1991).

    Article  Google Scholar 

  • 64.

    Karelus, D. L. et al. Effects of environmental factors and landscape features on movement patterns of Florida black bears. J. Mammal. 98, 1463–1478 (2017).

    Article  Google Scholar 

  • 65.

    Florida Natural Areas Inventory. Florida Forever Board of Trustees Projects (2018).

  • 66.

    McGarigal, K., Cushman, S. A. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. University of Massachusetts, Amherst, MA. https://www.umass.edu/landeco/research/fragstats/fragstats.html. (2012).

  • 67.

    Riley, S. J., DeGloria, S. D. & Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci. 5, 1–4 (1999).

    Google Scholar 

  • 68.

    Clark, J. D., Dunn, J. E. & Smith, K. G. A multivariate model of female black bear habitat use for a geographic information system. J. Wildl. Manag. 57, 519–526 (1993).

    Article  Google Scholar 

  • 69.

    U.S. Geological Survey. National Elevation Dataset. Washington, DC (2016).

  • 70.

    Ditmer, M. A., Noyce, K. V., Fieberg, J. R. & Garshelisa, D. L Delineating the ecological and geographic edge of an opportunist: The American black bear exploiting an agricultural landscape. Ecol. Model. 387, 205–219 (2018).

    Article  Google Scholar 

  • 71.

    U.S. Department of Agriculture National Agriculture Statistics Service. Census of Agriculture, Ag Census Web Maps. Washington, DC (2016).

  • 72.

    Hostetler, J. A. et al. Demographic consequences of anthropogenic influences: Florida black bears in north-central Florida. Biol. Conserv. 142, 2456–2463 (2009).

    Article  Google Scholar 

  • 73.

    Center for International Earth Science Information Network – CIESIN – Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density. Palisades, NY (2016).

  • 74.

    Brody, A. J. & Pelton, M. R. Effects of roads on black bears in western North Carolina. Wildl. Soc. B 17, 5–10 (1989).

    Google Scholar 

  • 75.

    U.S. Census Bureau. TIGER/Line Shapefiles (machine readable data files). Washington DC (2016).

  • 76.

    U.S. Geological Survey. National Hydrology Dataset. Washington, DC (2018).

  • 77.

    U.S. Fish & Wildlife Service. National Wetlands Inventory Data. St Petersburg, FL (2018).

  • 78.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).

  • 79.

    Esri. ArcGIS Desktop: Release 10.4. Redlands, CA: Environmental Systems Research Institute (2015).

  • 80.

    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Article  Google Scholar 

  • 81.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Article  Google Scholar 

  • 82.

    Calenge, C. The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2016).

    Article  Google Scholar 

  • 83.

    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

    Article  Google Scholar 

  • 84.

    Phillips, S. J., Dudik, M., & Schapire, R. E. A maximum entropy approach to species distribution modeling in Proceedings of the twenty-first international conference on machine learning (technical coordinators Greiner, R. & Schuurmans, D.) 655–662 (ACM Press, 2004).

  • 85.

    Hernandez, P. A. et al. Predicting species distributions in poorly-studied landscapes. Biodivers. Conserv. 17, 1353–1366 (2008).

    Article  Google Scholar 

  • 86.

    Poor, E. E., Loucks, C., Jakes, A. & Urban, D. L. Comparing habitat suitability and connectivity modeling methods for conserving pronghorn migrations. PLoS ONE 7, e49390 (2012).

    ADS  CAS  PubMed Central  Article  PubMed  Google Scholar 

  • 87.

    Duan, R.-Y., Kong, X.-Q., Huang, M.-Y., Fan, W.-Y. & Wang, Z.-G. The predictive performance and stability of six species distribution models. PLoS ONE 9, e112764 (2014).

    ADS  PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 88.

    Zhang, J. et al. MaxEnt modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park China. Ecol. Evol. 9, 6643–6654 (2019).

    PubMed Central  Article  PubMed  Google Scholar 

  • 89.

    Bertolino, S. et al. Spatially-explicit models as tools for implementing effective management strategies for invasive alien mammals. Mammal. Rev. 50, 87–199 (2020).

    Google Scholar 

  • 90.

    Alsamadisi, A. G., Tran, L. T. & Papes, M. Employing inferences across scales: integrating spatial data with different resolutions to enhance Maxent models. Ecol. Model. 415, 108857 (2020).

    Article  Google Scholar 

  • 91.

    Peralvo, M. F., Cuesta, F. & van Manen, F. Delineating priority habitat areas for the conservation of Andean bears in northern Ecuador. Ursus 16, 222–233 (2005).

    Article  Google Scholar 

  • 92.

    Mahalanobis, P. C. On the generalized distance in statistics. Proc. Natl. Aacd. Sci. India 2, 49–55 (1936).

    MATH  Google Scholar 

  • 93.

    Browning, D. M., Beaupre, S. J. & Duncan, L. Using partitioned Mahalanobis D2 (K) to formulate a GIS-based model of timber rattlesnake hibernacula. J. Wildl. Manag. 69, 33–44 (2005).

    Article  Google Scholar 

  • 94.

    Griffin, S. C., Taper, M. L., Hoffman, R. & Mills, L. S. Ranking Mahalanobis Distance models for predictions of occupancy from presence-only data. J. Wildl. Manag. 74, 1112–1121 (2010).

    Article  Google Scholar 

  • 95.

    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    Article  Google Scholar 

  • 96.

    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).

    Article  Google Scholar 

  • 97.

    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).

    Article  Google Scholar 

  • 98.

    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).

    Article  Google Scholar 

  • 99.

    Murrow, J. L. & Clark, J. D. Effects of hurricanes Katrina and Rita on Louisiana black bear habitat. Ursus 23, 192–205 (2012).

    Article  Google Scholar 

  • 100.

    Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics 21, 7881 (2005).

    Article  CAS  Google Scholar 

  • 101.

    Broennimann, B. & Di Cola, V. A. ecospat: Spatial Ecology Miscellaneous Methods. R package version 3.0 (2018).

  • 102.

    Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).

    Article  Google Scholar 

  • 103.

    Hellgren, E. C., Bales, S. L., Gregory, M. S., Leslie, D. M. Jr. & Clark, J. D. Testing a Mahalanobis Distance model of black bear habitat use in the Ouichita Mountains of Oklahoma. J. Wildl. Manag. 71, 924–928 (2007).

    Article  Google Scholar 

  • 104.

    Murrow, J. L., Thatcher, C. A., van Manen, F. T. & Clark, J. A data-based conservation planning tool for Florida Panthers. Environ. Model. Assess. 18, 159–170 (2013).

    Article  Google Scholar 

  • 105.

    NOAA Office for Coastal Management. Detailed method for mapping sea level rise inundation. (NOAA, 2017).

  • 106.

    Pelton, M. R. 2003. Black bear. In Wild Mammals of North America: Biology, Management, and Conservation (eds Feldhamer, J. A. et al.) 547–555 (Johns Hopkins University, Baltimore, 2003).

    Google Scholar 

  • 107.

    Thuiller, W., Brotons, L., Araujo, M. B. & Lavorel, S. Effects of restricting environmental range of data to project current and future species distributions. Ecography 27, 165–172 (2004).

    Article  Google Scholar 

  • 108.

    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).

    Article  Google Scholar 

  • 109.

    Kopp, R. E. et al. Probalistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2, 383–406 (2014).

    ADS  Article  Google Scholar 

  • 110.

    Xiao, H. & Tang, Y. Assess the “superposed” effects of storm surge from a Category 3 hurricane. and continuous sea-level rise on saltwater intrusion into the surficial aquifer in coastal east-central Florida (USA). Environ. Sci. Pollut Res. 26, 21882–21889 (2019).

    CAS  Article  Google Scholar 

  • 111.

    Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–234 (2014).

    ADS  CAS  Article  Google Scholar 

  • 112.

    Mukul, S. A. et al. Combined effects of climate change and sea-level rise project dramatic habitat loss of the globally endangered Bengal tiger in the Bangladesh Sundarbans. Sci. Total Environ. 663, 830–840 (2019).

    ADS  CAS  Article  Google Scholar 

  • 113.

    Poor, E. E., Shao, Y. & Kelly, M. J. Mapping and predicting forest loss in a Sumatran tiger landscape from 2002 to 2050. J. Environ. Manag. 231, 397–404 (2019).

    Article  Google Scholar 

  • 114.

    Durner, G. M. et al. Predicting 21st-century polar bear habitat distribution from global climate models. Ecol. Monogr. 79, 25–58 (2009).

  • 115.

    Yovovich, V., Allen, M. L., Macaulay, L. T. & Wilmers, C. C. Using spatial characteristics of apex carnivore communication and reproductive behaviors to predict responses to future human development. Biodivers. Conserv. 29, 2589–2603 (2020).

    Article  Google Scholar 

  • 116.

    Muhly, T. B. et al. Functional response of wolves to human development across boreal North America. Ecol. Evol. 9, 10801–10815 (2019).

    PubMed Central  Article  PubMed  Google Scholar 

  • 117.

    Zeller, K. A., Wattles, D. W., Conlee, L. & Destefano, S. Response of female black bears to a high-density road network and identification of long-term road mitigation sites. Anim. Conserv. https://doi.org/10.1111/acv.12621 (2020).

    Article  Google Scholar 

  • 118.

    Morales-González, A., Ruiz-Villar, H., Ordiz, A. & Penteriani, V. Large carnivores living alongside humans: Brown bears in human-modified landscapes. Glob. Ecol. Conserv. 22, 1–13 (2020).

    Google Scholar 

  • 119.

    Maletzke, B. et al. Cougar response to a gradient of human development. Ecosphere 8, 1–14 (2017).

    Article  Google Scholar 

  • 120.

    Barrington-Leigh, C. & Millard-Ball, A. A century of sprawl in the United States. PNAS https://doi.org/10.1073/pnas.1504033112 (2015).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    More than a meal

    Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach