in

Mycosporine-like amino acid and aromatic amino acid transcriptome response to UV and far-red light in the cyanobacterium Chlorogloeopsis fritschii PCC 6912

  • 1.

    Singh, S. P., Häder, D.-P. & Sinha, R. P. Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies. Ageing Res. Rev. 9, 79–90 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Montgomery, B. L. Seeing new light: recent insights into the occurrence and regulation of chromatic acclimation in cyanobacteria. Curr. Opin. Plant Biol. 37, 18–23 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Huang, L., McCluskey, M. P., Ni, H. & LaRossa, R. A. Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. J. Bacteriol. 184, 6845–6858 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Hideg, É., Jansen, M. K. & Strid, Å. UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci. 18, 107–115 (2013).

  • 5.

    Shick, J. M. & Dunlap, W. C. Mycosporine-like amino acids and related gadusols: biosynthesis, acumulation, and UV-protective functions in aquatic organisms. Annu. Rev. Physiol. 64, 223–262 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Oren, A. & Gunde-Cimerman, N. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites?. Fems. Microbiol. Lett. 269, 1–10 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Llewellyn, C. A. & Airs, R. L. Distribution and abundance of MAAs in 33 species of microalgae across 13 classes. Marine Drugs 8, 1273–1291 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Garcia-Pichel, F. & Castenholz, R. W. Occurence of UV-absorbing, Mycosporine-like compounds among cyanobacterial isolates and estimates of their screening capacity. Appl. Environ. Microbiol. 59, 163–169 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Schmid, D., Cornelia, S. & Fred, Z. UV-A sunscreen from red algae for protection against premature skin aging. Cosmetics 2004, 139–143 (2004).

    Google Scholar 

  • 10.

    Liddell, P. A. et al. Mimicry of carotenoid function in photosynthesis: synthesis and photophysical properties of a carotenopyropheophorbide. Photochem. Photobiol. 36, 641–645 (1982).

    CAS  Article  Google Scholar 

  • 11.

    Derikvand, P., Llewellyn, C. A. & Purton, S. Cyanobacterial metabolites as a source of sunscreens and moisturizers: a comparison with current synthetic compounds. Eur. J. Phycol. 52, 43–56 (2016).

    Article  CAS  Google Scholar 

  • 12.

    Rastogi, R. P. et al. Ultraviolet radiation and cyanobacteria. J. Photochem. Photobiol. B 141, 154–169 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Rastogi, R. P., Madamwar, D. & Incharoensakdi, A. Sun-screening bioactive compounds mycosporine-like amino acids in naturally occurring cyanobacterial biofilms: role in photoprotection. J. Appl. Microbiol. 119, 753–762 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Portwich, A. & Garcia-Pichel, F. Ultraviolet and osmotic stresses induce and regulate the synthesis of mycosporines in the cyanobacterium Chlorogloeopsis PCC 6912. Arch. Microbiol. 172, 187–192 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Waditee-Sirisattha, R., Kageyama, H., Fukaya, M., Rai, V. & Takabe, T. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica. Fems Microbiol. Lett. 362, fnv198 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 16.

    Conde, F. R., Churio, M. S. & Previtali, C. M. The deactivation pathways of the excited-states of the mycosporine-like amino acids shinorine and porphyra-334 in aqueous solution. Photochem. Photobiol. Sci. 3, 960–967 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Gao, Q. & Garcia-Pichel, F. Microbial ultraviolet sunscreens. Nat. Rev. Microbiol. 9, 791–802 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Balskus, E. P. & Walsh, C. T. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329, 1653–1656 (2010).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Pope, M. A. et al. O-Methyltransferase is shared between the pentose phosphate and shikimate pathways and is essential for mycosporine-like amino acid biosynthesis in Anabaena variabilis ATCC 29413. ChemBioChem 16, 320–327 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Portwich, A. & Garcia-Pichel, F. Biosynthetic pathway of mycosporines (mycosporine-like amino acids) in the cyanobacterium Chlorogloeopsis sp strain PCC 6912. Phycologia 42, 384–392 (2003).

    Article  Google Scholar 

  • 21.

    Challis, G. L. & Naismith, J. H. Structural aspects of non-ribosomal peptide biosynthesis. Curr. Opin. Struct. Biol. 14, 748–756 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Gao, Q. & Garcia-Pichel, F. An ATP-grasp ligase involved in the last biosynthetic step of the iminomycosporine shinorine in Nostoc punctiforme ATCC 29133. J. Bacteriol. 193, 5923–5928 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Maeda, H. & Dudareva, N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 63, 73–105 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Wu, D. et al. Structural basis of ultraviolet-B perception by UVR8. Nature 484, 214–219 (2012).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 25.

    Rizzini, L. et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science 332, 103–106 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Busch, A. W. U. & Montgomery, B. L. Distinct light-, stress-, and nutrient-dependent regulation of multiple tryptophan-rich sensory protein (TSPO) genes in the cyanobacterium Fremyella diplosiphon. Plant Signal Behav. 12, e1293221 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 27.

    Gan, F. et al. Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345, 1312–1317 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Ho, M. Y. & Bryant, D. A. Global transcriptional profiling of the cyanobacterium Chlorogloeopsis fritschii PCC 9212 in far-red light: insights into the regulation of chlorophyll d synthesis. Front. Microbiol. 10, 465 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Airs, R. L. et al. Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation. FEBS Lett. 588, 3770–3777 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Zheng, Z., Gao, S. & Wang, G. Far red light induces the expression of LHCSR to trigger nonphotochemical quenching in the intertidal green macroalgae Ulva prolifera. Algal Res. 40, 101512 (2019).

    Article  Google Scholar 

  • 31.

    Kono, M., Yamori, W., Suzuki, Y. & Terashima, I. Photoprotection of PSI by far-red light against the fluctuating light-induced photoinhibition in Arabidopsis thaliana and field-grown plants. Plant Cell Physiol. 58, 35–45 (2017).

    CAS  PubMed  Google Scholar 

  • 32.

    Ma, K. Two new algae from Indian Soil. Ann. Bot. 14, 457–464 (1950).

    Article  Google Scholar 

  • 33.

    Garcia-Pichel, F., Wingard, C. E. & Castenholz, R. W. Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl. Environ. Microbiol. 59, 170–176 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Singh, S. P., Klisch, M., Sinha, R. P. & Hader, D. P. Genome mining of mycosporine-like amino acid (MAA) synthesizing and non-synthesizing cyanobacteria: a bioinformatics study. Genomics 95, 120–128 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Osborn, A. R. et al. De novo synthesis of a sunscreen compound in vertebrates. Elife 4, e05919 (2015).

    PubMed Central  Article  PubMed  Google Scholar 

  • 36.

    Osborn, A. R. et al. Evolution and distribution of C7-cyclitol synthases in prokaryotes and eukaryotes. ACS Chem. Biol. 12, 979–988 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Carreto, J. I., Carignan, M. O. & Montoya, N. G. A high-resolution reverse-phase liquid chromatography method for the analysis of mycosporine-like amino acids (MAAs) in marine organisms. Mar. Biol. 146, 237–252 (2005).

    CAS  Article  Google Scholar 

  • 38.

    Bandaranayake, W. M. Mycosporines: are they nature’s sunscreens?. Nat. Prod. Rep. 15, 159–172 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Kultschar, B., Dudley, E., Wilson, S. & Llewellyn, C. A. Intracellular and extracellular metabolites from the cyanobacterium Chlorogloeopsis fritschii, PCC 6912, during 48 hours of UV-B exposure. Metabolites 9, 74 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  • 40.

    Busch, A. W. U., WareJoncas, Z. & Montgomery, B. L. Tryptophan-rich sensory protein/translocator protein (TSPO) from cyanobacterium Fremyella diplosiphon binds a broad range of functionally relevant tetrapyrroles. Biochemistry 56, 73–84 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Prasanna, R. et al. Rediscovering cyanobacteria as valuable sources of bioactive compounds. Prikl. Biokhim. Mikrobiol. 46, 133–147 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Kobayashi, M., Rodriguez, R., Lara, C. & Omata, T. Involvement of the C-terminal domain of an ATP-binding subunit in the regulation of the ABC-type nitrate/nitrite transporter of the cyanobacterium Synechococcus sp. strain PCC 7942. J. Biol. Chem. 272, 27197–27201 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Couradeau, E. et al. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat. Commun. 7, 10373 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Llewellyn, C. A., Airs, R. L., Farnham, G. & Greig, C. Synthesis, regulation and degradation of carotenoids under low level UV-B radiation in the filamentous cyanobacterium Chlorogloeopsis fritschii PCC 6912. Front. Microbiol. 11, 163 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 46.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • 47.

    Pinto, F., Pacheco, C. C., Ferreira, D., Moradas-Ferreira, P. & Tamagnini, P. Selection of suitable reference genes for RT-qPCR analyses in cyanobacteria. PLoS ONE 7, e34983 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17, 10–12 (2011).

    Google Scholar 

  • 49.

    Tjaden, B. De novo assembly of bacterial transcriptomes from RNA-seq data. Genome Biol. 16, 1 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    McClure, R. et al. Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res. 41, e140 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 52.

    Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Interactions between coral propagules in aquarium and field conditions

    Population viability in a host-parasitoid system is mediated by interactions between population stage structure and life stage differential susceptibility to toxicants