Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur. Biogeochemistry 13, 87–115 (1991).
Yuan, Z. Y. & Chen, H. Y. H. A global analysis of fine root production as affected by soil nitrogen and phosphorus. Proc. R. Soc. Lond. B 279, 3796–3802 (2012).
LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).
Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).
Marschner, H. Marschner’s Mineral Nutrition of Higher Plants 3rd edn (Academic Press, 2012).
Niklaus, P. A., Wardle, D. A. & Tate, K. R. Effects of plant species diversity and composition on nitrogen cycling and the trace gas balance of soils. Plant Soil 282, 83–98 (2006).
Li, Z. et al. Microbes drive global soil nitrogen mineralization and availability. Glob. Change Biol. 25, 1078–1088 (2019).
Oelmann, Y. et al. Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: development in the first 5 years after establishment. Glob. Biogeochem. Cycles https://doi.org/10.1029/2010GB003869 (2011).
Cong, W. F. et al. Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. J. Ecol. 102, 1163–1170 (2014).
Mueller, K. E., Hobbie, S. E., Tilman, D. & Reich, P. B. Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment. Glob. Change Biol. 19, 1249–1261 (2013).
von Felten, S. et al. Belowground nitrogen partitioning in experimental grassland plant communities of varying species richness. Ecology 90, 1389–1399 (2009).
Le Roux, X. et al. Soil environmental conditions and microbial build-up mediate the effect of plant diversity on soil nitrifying and denitrifying enzyme activities in temperate grasslands. PLoS ONE https://doi.org/10.1371/journal.pone.0061069 (2013).
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
Fornara, D. A. & Tilman, D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J. Ecol. 96, 314–322 (2008).
Alberti, G. et al. Tree functional diversity influences belowground ecosystem functioning. Appl. Soil Ecol. 120, 160–168 (2017).
McKane, R. B. et al. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415, 68–71 (2002).
Meyer, S. T. et al. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere https://doi.org/10.1002/ecs2.1619 (2016).
Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).
Bessler, H. et al. Nitrogen uptake by grassland communities: contribution of N2 fixation, facilitation, complementarity, and species dominance. Plant Soil 358, 301–322 (2012).
Chen, X. & Chen, H. Y. H. Plant diversity loss reduces soil respiration across terrestrial ecosystems. Glob. Change Biol. 25, 1482–1492 (2019).
Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D. & Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84, 2042–2050 (2003).
Hooper, D. U. & Vitousek, P. M. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr. 68, 121–149 (1998).
Chen, X. et al. Effects of plant diversity on soil carbon in diverse ecosystems: a global meta-analysis. Biol. Rev. 95, 167–183 (2020).
Chen, C., Chen, H. Y. H., Chen, X. & Huang, Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat. Commun. 10, 1332 (2019).
Ma, Z. L. & Chen, H. Y. H. Positive species mixture effects on fine root turnover and mortality in natural boreal forests. Soil Biol. Biochem. 121, 130–137 (2018).
Eisenhauer, N. et al. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91, 485–496 (2010).
Lange, M. et al. How plant diversity impacts the coupled water, nutrient and carbon cycles. Adv. Ecol. Res. 61, 185–219 (2019).
Forrester, D. I. & Bauhus, J. A review of processes behind diversity–productivity relationships in forests. Curr. For. Rep. 2, 45–61 (2016).
Hisano, M., Chen, H. Y. H., Searle, E. B. & Reich, P. B. Species-rich boreal forests grew more and suffered less mortality than species-poor forests under the environmental change of the past half-century. Ecol. Lett. 22, 999–1008 (2019).
Mueller, K. E., Tilman, D., Fornara, D. A. & Hobbie, S. E. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94, 787–793 (2013).
Oram, N. J. et al. Below-ground complementarity effects in a grassland biodiversity experiment are related to deep-rooting species. J. Ecol. 106, 265–277 (2018).
Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).
Ma, Z. L. & Chen, H. Y. H. Effects of species diversity on fine root productivity in diverse ecosystems: a global meta-analysis. Glob. Ecol. Biogeogr. 25, 1387–1396 (2016).
Leimer, S. et al. Mechanisms behind plant diversity effects on inorganic and organic N leaching from temperate grassland. Biogeochemistry 131, 339–353 (2016).
van Ruijven, J. & Berendse, F. Diversity–productivity relationships: initial effects, long-term patterns, and underlying mechanisms. Proc. Natl Acad. Sci. USA 102, 695–700 (2005).
Manzoni, S., Jackson, R. B., Trofymow, J. A. & Porporato, A. The global stoichiometry of litter nitrogen mineralization. Science 321, 684–686 (2008).
Howarth, R. W. & Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol. Oceanogr. 51, 364–376 (2006).
Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
Post, W. M., Pastor, J., Zinke, P. J. & Stangenberger, A. G. Global patterns of soil-nitrogen storage. Nature 317, 613–616 (1985).
Fowler, D., Pyle, J. A., Raven, J. A. & Sutton, M. A. The global nitrogen cycle in the twenty-first century: introduction. Phil. Trans. R. Soc. Lond. B https://doi.org/10.1098/rstb.2013.0165 (2013).
Ratcliffe, S. et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol. Lett. 20, 1414–1426 (2017).
Santonja, M. et al. Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. J. Ecol. 105, 801–815 (2017).
Groffman, P. M. et al. Earthworms increase soil microbial biomass carrying capacity and nitrogen retention in northern hardwood forests. Soil Biol. Biochem. 87, 51–58 (2015).
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & The, P. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).
Plot Digitizer v.2.0 (Faculty in the Department of Physics at the University of South Alabama, 2020); https://go.nature.com/2Gj5qW0
Trabucco, A. & Zomer, R. J. Global Aridity Index (Global-Aridity) and Global Potential Evapo-transpiration (Global-PET) Geospatial Database (CGIAR, 2009); http://www.cgiar-csi.org
UNEP World Atlas of Desertification (Edward Arnold Publication, 1997).
Chen, H. Y. H. & Brassard, B. W. Intrinsic and extrinsic controls of fine root life span. Crit. Rev. Plant Sci. 32, 151–161 (2013).
Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).
Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).
Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: linear mixed-effects models using Eigen and S4. R package v.1.1-23 (2020); https://cran.r-project.org/web/packages/lme4/index.html
Cohen, J., Cohen, P., West, S. G. & Alken, L. S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (Routledge, 2013).
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).
Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour? J. Anim. Ecol. 75, 1182–1189 (2006).
Bartoń, K. MuMIn: multi-model inference. R package v.1.42.1 (2018); https://cran.r-project.org/web/packages/MuMIn/index.html
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).
Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of Meta-analysis in Ecology and Evolution (Princeton Univ. Press, 2013).
Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v.0.3.3.0 (2020); https://cran.r-project.org/web/packages/DHARMa/index.html
Smith, J. L. & Doran, J. W. in Methods for Assessing Soil Quality (eds Doran, J. W. & Jones, A. J.) 169–185 (Soil Science Society of America, 1997).
Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283 (1997).
R Core Team R: A Language and Environment for Statistical Computing v.4.0.0 (R Foundation for Statistical Computing, 2020).
Source: Ecology - nature.com