in

Net benefits to US soy and maize yields from intensifying hourly rainfall

  • 1.

    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

    CAS  Article  Google Scholar 

  • 2.

    Vogel, E. et al. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010 (2019).

    Article  Google Scholar 

  • 3.

    Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).

    CAS  Article  Google Scholar 

  • 4.

    Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).

    Article  Google Scholar 

  • 5.

    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).

    Article  Google Scholar 

  • 6.

    van der Velde, M., Wriedt, G. & Bouraoui, F. Estimating irrigation use and effects on maize yield during the 2003 heatwave in France. Agric. Ecosyst. Environ. 135, 90–97 (2010).

    Article  Google Scholar 

  • 7.

    Rosenzweig, C., Tubiello, F. N., Goldberg, R., Mills, E. & Bloomfield, J. Increased crop damage in the US from excess precipitation under climate change. Glob. Environ. Change 12, 197–202 (2002).

    Article  Google Scholar 

  • 8.

    O’Gorman, P. & Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl Acad. Sci. USA 106, 14773–14777 (2009).

    Article  Google Scholar 

  • 9.

    Westra, S. et al. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 52, 522–555 (2014).

    Article  Google Scholar 

  • 10.

    Zhu, X. & Troy, T. J. Agriculturally relevant climate extremes and their trends in the world’s major growing regions. Earth’s Future 6, 656–672 (2018).

    Article  Google Scholar 

  • 11.

    Ray, D. K., Gerber, J. S., Macdonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).

    CAS  Article  Google Scholar 

  • 12.

    Lobell, D. B. & Field, C. B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 014002 (2007).

    Article  Google Scholar 

  • 13.

    Urban, D. W., Roberts, M. J., Schlenker, W. & Lobell, D. B. The effects of extremely wet planting conditions on maize and soybean yields. Clim. Change 130, 247–260 (2015).

    CAS  Article  Google Scholar 

  • 14.

    Li, Y., Guan, K., Schnitkey, G. D., Delucia, E. & Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Change Biol. 25, 2325–2337 (2019).

    Google Scholar 

  • 15.

    Lobell, D. B. & Burke, M. B. Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environ. Res. Lett. 3, 034007 (2008).

    Article  Google Scholar 

  • 16.

    Lobell, D. B. & Gourdji, S. M. The influence of climate change on global crop productivity. Plant Physiol. 160, 1686–1697 (2012).

    CAS  Article  Google Scholar 

  • 17.

    Palecki, M. A., Angel, J. R. & Hollinger, S. E. Storm precipitation in the United States. Part I: meteorological characteristics. J. Appl. Meteorol. 44, 933–946 (2005).

    Article  Google Scholar 

  • 18.

    Thorp, J. M. & Scott, B. C. Preliminary calculations of average storm duration and seasonal precipitation rates for the northeast sector of the United States. Atmos. Environ. 16, 1763–1774 (1982).

    Article  Google Scholar 

  • 19.

    Zhang, W., Villarini, G., Scoccimarro, E. & Vecchi, G. A. Stronger influences of increased CO2 on subdaily precipitation extremes than at the daily scale. Geophys. Res. Lett. 44, 7454–7471 (2017).

    Google Scholar 

  • 20.

    Lepore, C., Allen, J. T. & Tippett, M. K. Relationships between hourly rainfall intensity and atmospheric variables over the contiguous United States. J. Clim. 29, 3181–3197 (2016).

    Article  Google Scholar 

  • 21.

    Ashraf, M. & Habib-ur-Rehman. Interactive effects of nitrate and long-term waterlogging on growth, water relations, and gaseous exchange properties of maize (Zea mays L.). Plant Sci. 144, 35–43 (1999).

    CAS  Article  Google Scholar 

  • 22.

    Martínez-Casasnovas, J. A., Ramos, M. C. & Ribes-Dasi, M. Soil erosion caused by extreme rainfall events: mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma 105, 125–140 (2002).

    Article  Google Scholar 

  • 23.

    Meisinger, J. J. & Delgado, J. A. Principles for managing nitrogen leaching. J. Soil Water Conserv. 57, 485–498 (2002).

    Google Scholar 

  • 24.

    Zahran, H. H. Rhizobium–legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63, 968–989 (1999).

    CAS  Article  Google Scholar 

  • 25.

    Dastane, N. G. Effective Rainfall in Irrigated Agriculture Irrigation and Drainage Paper No. 25 (FAO, 1978).

  • 26.

    Van Elewijk, L. Stemflow on maize: a stemflow equation and the influence of rainfall intensity on stemflow amount. Soil Technol. 2, 41–48 (1989).

    Article  Google Scholar 

  • 27.

    Munkvold, G. P. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur. J. Plant Pathol. 109, 705–713 (2003).

    CAS  Article  Google Scholar 

  • 28.

    Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).

    CAS  Article  Google Scholar 

  • 29.

    Lenderink, G. & Van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 1, 511–514 (2008).

    CAS  Article  Google Scholar 

  • 30.

    Berg, P., Moseley, C. & Haerter, J. O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 6, 181–185 (2013).

    CAS  Article  Google Scholar 

  • 31.

    Prein, A. F. et al. The future intensification of hourly precipitation extremes. Nat. Clim. Change 7, 48–52 (2017).

    Article  Google Scholar 

  • 32.

    Chou, C., Chen, C. A., Tan, P. H. & Chen, K. T. Mechanisms for global warming impacts on precipitation frequency and intensity. J. Clim. 25, 3291–3306 (2012).

    Article  Google Scholar 

  • 33.

    Kendon, E. J. et al. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change 4, 570–576 (2014).

    Article  Google Scholar 

  • 34.

    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).

    CAS  Article  Google Scholar 

  • 35.

    de Bruyn, L. P. & de Jager, J. M. A meteorological approach to the identification of drought sensitive periods in field crops. Agric. Meteorol. 19, 35–40 (1978).

    Article  Google Scholar 

  • 36.

    Lin, Y. GCIP/EOP Surface: Precipitation NCEP/EMC 4KM Gridded Data (GRIB) Stage IV Data (UCAR/NCAR—Earth Obs. Lab., 2011); https://doi.org/10.5065/D6PG1QDD

  • 37.

    USDA Quickstats (USDA, 2018); http://quickstats.nass.usda.gov

  • 38.

    Thornton, P. E. et al. Daymet: Daily Surface Weather Data on a 1-km Grid for North America Version 2 (ORNL DAAC, 2016).

  • 39.

    Butler, E. E. & Huybers, P. Adaptation of US maize to temperature variations. Nat. Clim. Change 3, 68–72 (2013).

    Article  Google Scholar 

  • 40.

    Krajewski, W. F. & Smith, J. A. Radar hydrology: rainfall estimation. Adv. Water Resour. 25, 1387–1394 (2002).

    Article  Google Scholar 

  • 41.

    Karl, T., Nicholls, N. & Ghazi, A. Workshop on indices and indicators for climate extremes precipitation. Clim. Change 42, 3–7 (1999).

    Article  Google Scholar 

  • 42.

    Lau, W. K., Wu, H. & Kim, K. A canonical response of precipitation characteristics to global warming from CMIP5 models. Geophys. Res. Lett. 40, 3163–3169 (2013).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Shrinking deep learning’s carbon footprint

    3 Questions: Asegun Henry on five “grand thermal challenges” to stem the tide of global warming