in

New 12S metabarcoding primers for enhanced Neotropical freshwater fish biodiversity assessment

  • 1.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    WWF. Living Planet Report – 2018: Aiming higher. (WWF International, 2018).

  • 3.

    Kelly, R. P. et al. Harnessing DNA to improve environmental management. Science 344, 1455–1456 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Bonar, S. A., Hubert, W. A. & Willis, D. W. Standard methods for sampling North American freshwater fishes (2009).

  • 5.

    Wheeler, Q. D., Raven, P. H. & Wilson, E. O. Taxonomy: impediment or expedient?. Science (New York, NY) 303, 285 (2004).

    CAS  Article  Google Scholar 

  • 6.

    Kelly, R. P., Port, J. A., Yamahara, K. M. & Crowder, L. B. Using environmental DNA to census marine fishes in a large mesocosm. PLoS ONE 9, e86175 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 7.

    Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    McDevitt, A. D. et al. Environmental DNA metabarcoding as an effective and rapid tool for fish monitoring in canals. J. Fish Biol. 95, 679–682 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Deiner, K. et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Nobile, A. B. et al. DNA metabarcoding of neotropical ichthyoplankton: enabling high accuracy with lower cost. Metabarcoding Metagenomics 3, e35060 (2019).

    Article  Google Scholar 

  • 12.

    Mariac, C. et al. Metabarcoding by capture using a single COI probe (MCSP) to identify and quantify fish species in ichthyoplankton swarms. PLoS ONE 13, e0202976 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Leray, M., Meyer, C. P. & Mills, S. C. Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet. PeerJ 3, e1047 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 14.

    Shokralla, S. et al. Massively parallel multiplex DNA sequencing for specimen identification using an IlluminaMiSeq platform. Sci. Rep. 5, 9687 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Kitano, T., Umetsu, K., Tian, W. & Osawa, M. Two universal primer sets for species identification among vertebrates. Int. J. Legal Med. 121, 423–427 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Stoeckle, M. Y., Soboleva, L. & Charlop-Powers, Z. Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLoS ONE 12, e0175186 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 17.

    Sales, N. G. et al. Fishing for mammals: landscape-level monitoring of terrestrial and semi-aquatic communities using eDNA from riverine systems. J. Appl. Ecol. 57, 707–716 (2020).

    CAS  Article  Google Scholar 

  • 18.

    Bylemans, J. et al. An environmental DNA-based method for monitoring spawning activity: a case study, using the endangered Macquarie perch (Macquaria australasica). Methods Ecol. Evol. 8, 646–655 (2017).

    Article  Google Scholar 

  • 19.

    De Souza, L. S., Godwin, J. C., Renshaw, M. A. & Larson, E. Environmental DNA (eDNA) detection probability is influenced by seasonal activity of organisms. PLoS ONE 11, e0165273 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 20.

    Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).

    Article  Google Scholar 

  • 21.

    Cilleros, K. et al. Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): a test with Guianese freshwater fishes. Mol. Ecol. Resour. 19(1), 27–46. https://doi.org/10.1111/1755-0998.12900 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 22.

    Sales, N. G., Wangensteen, O. S., Carvalho, D. C. & Mariani, S. Influence of preservation methods, sample medium and sampling time on eDNA recovery in a neotropical river. Environ. DNA 1(2), 119–130. https://doi.org/10.1002/edn3.14 (2019).

    Article  Google Scholar 

  • 23.

    Sales, N. G. et al. Assessing the potential of environmental DNA metabarcoding for monitoring Neotropical mammals: a case study in the Amazon and Atlantic Forest, Brazil. Mamm. Rev. 50, 221–225 (2020).

    Article  Google Scholar 

  • 24.

    Dejean, T. et al. Persistence of environmental DNA in freshwater ecosystems. PLoS ONE 6, e23398 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Gomes, L. C., Pessali, T. C., Sales, N. G., Pompeu, P. S. & Carvalho, D. C. Integrative taxonomy detects cryptic and overlooked fish species in a neotropical river basin. Genetica 143, 581–588 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Pugedo, M. L., de Andrade Neto, F. R., Pessali, T. C., Birindelli, J. L. O. & Carvalho, D. C. Integrative taxonomy supports new candidate fish species in a poorly studied neotropical region: the Jequitinhonha River Basin. Genetica 144, 341–349 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Ramirez, J. L. et al. Revealing hidden diversity of the underestimated NeotropicalIchthyofauna: DNA barcoding in the recently described genus Megaleporinus (Characiformes: Anostomidae). Front. Genet. 8, 1–11 (2017).

    Article  CAS  Google Scholar 

  • 28.

    Carvalho, D. C. et al. Deep barcode divergence in Brazilian freshwater fishes: the case of the São Francisco River basin. Mitochondrial DNA 22, 80–86 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 29.

    Collins, R. A. et al. Non-specific amplification compromises environmental DNA metabarcoding with COI. Methods Ecol. Evol. 10, 1985–2001 (2019).

    Article  Google Scholar 

  • 30.

    Shaw, J. L. A. et al. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Conserv. 197, 131–138 (2016).

    Article  Google Scholar 

  • 31.

    Yamamoto, S. et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7, 40368 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    MacDonald, A. J. & Sarre, S. D. A framework for developing and validating taxon-specific primers for specimen identification from environmental DNA. Mol. Ecol. Resour. 17, 708–720 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Aljanabi, S. M. & Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 25, 4692–4693 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Thomsen, P. F. et al. Environmental DNA from seawater samples correlate with trawl catches of subarctic deepwater fishes. PLoS ONE 11, e0165252 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 36.

    Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    CAS  Article  Google Scholar 

  • 38.

    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees’. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Felsenstein, J. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution (N. Y.) 35, 1229–1242 (1981).

    Google Scholar 

  • 41.

    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Proutski, V. & Holmes, E. SWAN: sliding window analysis of nucleotide sequence variability. Bioinformatics 14, 467–468 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Brown, S. D. J. et al. Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol. Ecol. Resour. 12, 562–565 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    R Core Team. R: A Language and Environment for Statistical Computing (2020).

  • 45.

    Meusnier, I. et al. A universal DNA mini-barcode for biodiversity analysis. BMC Genomics 9, 214 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 46.

    Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134 (2012).

    CAS  Article  Google Scholar 

  • 47.

    Fujisawa, T. & Barraclough, T. G. Delimiting species using single-locus data and the generalized mixed yule coalescent approach: a revised method and evaluation on simulated data sets. Syst. Biol. 62, 707–724 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 51.

    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer 1.6 http://beast.bio.ed.ac.uk/tracer (2014).

  • 52.

    Rambaut, A. & Drummond, A. J. TreeAnnotator, version 1.7. 5. Available beast. bio. ed. ac. uk/TreeAnnotator (accessed 15 April 2010) (2012).

  • 53.

    Ward, R. D. DNA barcode divergence among species and genera of birds and fishes. Mol. Ecol. Resour. 9, 1077–1085 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Hajibabaei, M. et al. A minimalist barcode can identify a specimen whose DNA is degraded. Mol. Ecol. Notes 6, 959–964 (2006).

    CAS  Article  Google Scholar 

  • 55.

    Yu, H.-J. & You, Z.-H. Comparison of DNA truncated barcodes and full-barcodes for species identification. in International Conference on Intelligent Computing 108–114 (Springer, 2010).

  • 56.

    Harper, L. R. et al. Environmental DNA (eDNA) metabarcoding of pond water as a tool to survey conservation and management priority mammals. Biol. Conserv. 238, 108225 (2019).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Deep learning-assisted comparative analysis of animal trajectories with DeepHL

    Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization