in

Nitrogen isotopic signatures and fluxes of N2O in response to land-use change on naturally occurring saline–alkaline soil

  • 1.

    Myhre, G. et al. Anthropogenic and natural radiative forcing. In Climate change 2013: The physical science basis; Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change (ed. Stocker, T.) 659–740 (Cambridge University Press, Cambridge, 2014).

    Google Scholar 

  • 2.

    Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Thomson, A. J., Giannopoulos, G., Pretty, J., Baggs, E. M. & Richardson, D. J. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos. Trans. R. Soc. B Biol. Sci. 367(1593), 1157–1168 (2012).

    CAS  Article  Google Scholar 

  • 4.

    NoAA, ESLR (2019). https://www.esrl.noaa.gov/gmd/hats/insitu/cats/conc.php?site=brw&gas=n2o. Accessed on 01 May 2019.

  • 5.

    Park, S. et al. Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nat. Geosci. 5, 261–265 (2012).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Davidson, E. A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2, 659–662 (2009).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Hu, H., Chen, D. & He, J. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39(5), 729–749 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Zhou, M., Butterbach-Bahl, K., Vereecken, H. & Brüggemann, N. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems. Glob. Chang. Biol. 23, 1338–1352 (2017).

    ADS  PubMed  Article  Google Scholar 

  • 9.

    Inubushi, K., Barahona, M. A. & Yamakawa, K. Effects of salts and moisture content on N2O emission and nitrogen dynamics in Yellow soil and Andosol in model experiments. Biol. Fertil. Soils 29, 401–407 (1999).

    CAS  Article  Google Scholar 

  • 10.

    Yang, W., Yang, M., Wen, H. & Jiao, Y. Global warming potential of CH4 uptake and N2O emissions in saline–alkaline soils. Atmos. Environ. 191, 172–180 (2018).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Aliyu, G. et al. A meta-analysis of soil background N2O emissions from croplands in China shows variation among climatic zones. Agric. Ecosyst. Environ. 267, 63–73 (2018).

    CAS  Article  Google Scholar 

  • 12.

    Wang, Y. et al. Soil pH as the chief modifier for regional nitrous oxide emissions: New evidence and implications for global estimates and mitigation. Glob. Chang. Biol. 24, 617–626 (2018).

    Article  Google Scholar 

  • 13.

    Bouwman, A. F., Boumans, L. J. M. & Batjes, N. H. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Glob. Biogeochem. Cycles 16, 81–814 (2002).

    Google Scholar 

  • 14.

    Allen, D. E. et al. Nitrous oxide and methane emissions from soil are reduced following afforestation of pasture lands in three contrasting climatic zones. Soil Res. 47, 443 (2009).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Pendall, E. et al. Land use and season affect fluxes of CO2, CH4, CO, N2O, H2 and isotopic source signatures in Panama: Evidence from nocturnal boundary layer profiles. Glob. Chang. Biol. 16, 2721–2736 (2010).

    ADS  Article  Google Scholar 

  • 16.

    Van Lent, J., Hergoualc, H. K. & Verchot, L. V. Reviews and syntheses: Soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: A meta-analysis. Biogeosciences 12, 7299–7313 (2015).

    ADS  Article  Google Scholar 

  • 17.

    Benanti, G., Saunders, M., Tobin, B. & Osborne, B. Contrasting impacts of afforestation on nitrous oxide and methane emissions. Agric. For. Meteorol. 198–199, 82–93 (2014).

    ADS  Article  Google Scholar 

  • 18.

    de Godoi, S. G. et al. The conversion of grassland to acacia forest as an effective option for net reduction in greenhouse gas emissions. J. Environ. Manag. 169, 91–102 (2016).

    Article  CAS  Google Scholar 

  • 19.

    Zona, D. et al. Fluxes of the greenhouse gases (CO2, CH4 and N2O) above a short-rotation poplar plantation after conversion from agricultural land. Agric. For. Meteorol. 169, 100–110 (2013).

    ADS  Article  Google Scholar 

  • 20.

    Li, C., Di, H. J., Cameron, K. C., Podolyan, A. & Zhu, B. Effect of different land use and land use change on ammonia oxidiser abundance and N2O emissions. Soil Biol. Biochem. 96, 169–175 (2016).

    CAS  Article  Google Scholar 

  • 21.

    Ussiri, D. & Lal, R. Soil Emission of Nitrous Oxide and Its Mitigation (Springer, Netherlands, 2013).

    Google Scholar 

  • 22.

    Butterbach-Bahl, K. et al. Nitrous oxide emissions from soils: How well do we understand the processes and their controls?. Philos Trans. R. Soc. B Biol. Sci. 368, 1621. https://doi.org/10.1098/rstb.2013.0122 (2013).

    CAS  Article  Google Scholar 

  • 23.

    Sarauer, J. L. & Coleman, M. D. Converting conventional agriculture to poplar bioenergy crops: Soil greenhouse gas flux. Scand. J. For. Res. 33, 781–792 (2018).

    Article  Google Scholar 

  • 24.

    Denk, T. R. A. et al. The nitrogen cycle: A review of isotope effects and isotope modeling approaches. Soil Biol. Biochem. 105, 121–137 (2017).

    CAS  Article  Google Scholar 

  • 25.

    Park, S. et al. Can N2O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N2O production and consumption in tropical soils ?. Glob. Biogeochem. Cycles 25, 1–16 (2011).

    CAS  Article  Google Scholar 

  • 26.

    Koba, K. et al. The 15N natural abundance of the N lost from an N-saturated subtropical forest in southern China. J. Geophys. Res. Biogeosci. 117, G2. https://doi.org/10.1029/2010JG001615 (2012).

    CAS  Article  Google Scholar 

  • 27.

    Gil, J., Pérez, T., Boering, K., Martikainen, P. J. & Biasi, C. Mechanisms responsible for high N2O emissions from subarctic permafrost peatlands studied via stable isotope techniques. Glob. Biogeochem. Cycles 31, 172–189 (2017).

    CAS  Article  Google Scholar 

  • 28.

    Pérez, T. et al. Identifying the agricultural imprint on the global N2O budget using stable isotopes. J. Geophys. Res. Atmos. 106, 9869–9878 (2001).

    ADS  Article  Google Scholar 

  • 29.

    Conen, F. & Neftel, Æ. A. Do increasingly depleted d 15N values of atmospheric N2O indicate a decline in soil N2O reduction ?. Biogeochemistry 82(3), 321–326 (2007).

    CAS  Article  Google Scholar 

  • 30.

    Wada, E. & Ueda, S. Carbon, nitrogen, and oxygen isotope ratios of CH4 and N2O in soil ecosystems. In Mass Spectrometry of Soils (eds Boutton, T. W. & Yamaski, S. I.) 177–203 (Marchel Dekker, New York, 1996).

    Google Scholar 

  • 31.

    Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 108, 3465–3472 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Shi, Z., Wang, R., Huang, M. X. & Landgraf, D. Detection of coastal saline land uses with multi-temporal landsat images in Shangyu City, China. Environ. Manag. 30, 142–150 (2002).

    Article  Google Scholar 

  • 33.

    Manning, M. et al. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  • 34.

    Cui, B., Yang, Q., Zhang, K., Zhao, X. & You, Z. Responses of saltcedar (Tamarix chinensis) to water table depth and soil salinity in the Yellow River Delta, China. Plant Ecol. 209, 279–290 (2010).

    Article  Google Scholar 

  • 35.

    Feng, X. et al. Spatiotemporal heterogeneity of soil water and salinity after establishment of dense-foliage Tamarix chinensis on coastal saline land. Ecol. Eng. 121, 104–113 (2018).

    Article  Google Scholar 

  • 36.

    Zhang, L. L. et al. Seasonal dynamics in nitrous oxide emissions under different types of vegetation in saline–alkaline soils of the Yellow River Delta, China and implications for eco-restoring coastal wetland. Ecol. Eng. 61, 82–89 (2013).

    ADS  Article  Google Scholar 

  • 37.

    Abalos, D., van Groenigen, J. W. & De Deyn, G. B. What plant functional traits can reduce nitrous oxide emissions from intensively managed grasslands?. Glob. Chang. Biol. 24, 248–258 (2018).

    Article  Google Scholar 

  • 38.

    Ju, Z., Du, Z., Guo, K. & Liu, X. Irrigation with freezing saline water for 6 years alters salt ion distribution within soil aggregates. J. Soils Sedim. 19, 97–105 (2019).

    CAS  Article  Google Scholar 

  • 39.

    Li, F. et al. Impact of rice-fish/shrimp co-culture on the N2O emission and NH3 volatilization in intensive aquaculture ponds. Sci. Total Environ. 655, 284–291 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Snider, D., Thompson, K., Wagner-Riddle, C., Spoelstra, J. & Dunfield, K. Molecular techniques and stable isotope ratios at natural abundance give complementary inferences about N2O production pathways in an agricultural soil following a rainfall event. Soil Biol. Biochem. 88, 197–213 (2015).

    CAS  Article  Google Scholar 

  • 41.

    Dong, W. H., Zhang, S., Rao, X. & Liu, C.-A. Newly-reclaimed alfalfa forage land improved soil properties comparison to farmland in wheat–maize cropping systems at the margins of oases. Ecol. Eng. 94, 57–64 (2016).

    Article  Google Scholar 

  • 42.

    Livesley, S. J. et al. Soil–atmosphere exchange of greenhouse gases in a Eucalyptus marginata woodland, a clover-grass pasture, and Pinus radiata and Eucalyptus globulus plantations. Glob. Chang. Biol. 15, 425–440 (2009).

    ADS  Article  Google Scholar 

  • 43.

    Lin, S. et al. Differences in nitrous oxide fluxes from red soil under different land uses in mid-subtropical China. Agric. Ecosyst. Environ. 146, 168–178 (2012).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Song, A. et al. Substrate-driven microbial response: A novel mechanism contributes significantly to temperature sensitivity of N2O emissions in upland arable soil. Soil Biol. Biochem. 118, 18–26 (2018).

    CAS  Article  Google Scholar 

  • 45.

    Huang, X. et al. A flexible Bayesian model for describing temporal variability of N2O emissions from an Australian pasture. Sci. Total Environ. 454, 206–210 (2013).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 46.

    Nan, W. et al. Characteristics of N2O production and transport within soil profiles subjected to different nitrogen application rates in China. Sci. Total Environ. 542, 864–875 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 47.

    Chaddy, A., Melling, L., Ishikura, K. & Hatano, R. Soil N2O emissions under different N rates in an oil palm plantation on tropical peatland. Agriculture 9, 213. https://doi.org/10.3390/agriculture9100213 (2019).

    CAS  Article  Google Scholar 

  • 48.

    Davidson, E. A. Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Sci. Soc. Am. J. 56, 95–102 (1992).

    ADS  CAS  Article  Google Scholar 

  • 49.

    Kazuya, N. et al. Evaluation of uncertinities in N2O and NO fluxes from agricultural soil using a hierarchical bayesian model. J Geophys Res. 117, G04008. https://doi.org/10.1029/2012JG002157 (2012).

    ADS  CAS  Article  Google Scholar 

  • 50.

    Sakata, R. et al. Effect of soil types and nitrogen fertilizer on nitrous oxide and carbon dioxide emissions in oil palm plantations. Soil Sci. Plant Nutr. 61, 48–60 (2015).

    CAS  Article  Google Scholar 

  • 51.

    Smith, K. A. Changing views of nitrous oxide emissions from agricultural soil: Key controlling processes and assessment at different spatial scales. Eur. J. Soil Sci. 68, 137–155 (2017).

    CAS  Article  Google Scholar 

  • 52.

    Bateman, E. J. & Baggs, E. M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 41, 379–388 (2005).

    CAS  Article  Google Scholar 

  • 53.

    Chapuis-lardy, L., Wrage, N., Metay, A., Chotte, J. L. & Bernoux, M. Soils, a sink for N2O? A review. Glob. Chang. Biol. 13, 1–17 (2007).

    ADS  Article  Google Scholar 

  • 54.

    Glatzel, S. & Stahr, K. Methane and nitrous oxide exchange in differently fertilised grassland in southern Germany. Plant Soil 231, 21–35 (2001).

    CAS  Article  Google Scholar 

  • 55.

    Saggar, S. et al. Denitrification and N2O:N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. Sci. Total Environ. 465, 173–195 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Warneke, S., Schipper, L. A., Bruesewitz, D. A., Mcdonald, I. & Cameron, S. Rates, controls and potential adverse effects of nitrate removal in a denitrification bed. Ecol. Eng. 37, 511–522 (2011).

    Article  Google Scholar 

  • 57.

    Wang, Y. et al. Depth-dependent greenhouse gas production and consumption in an upland cropping system in northern China. Geoderma 319, 100–112 (2018).

    ADS  CAS  Article  Google Scholar 

  • 58.

    Wu, D. et al. N2O consumption by low-nitrogen soil and its regulation by water and oxygen. Soil Biol. Biochem. 60, 165–172 (2013).

    CAS  Article  Google Scholar 

  • 59.

    Dijkstra, F. A., Morgan, J. A., Follett, R. F. & LeCain, D. R. Climate change reduces the net sink of CH4 and N2O in a semiarid grassland. Glob. Chang. Biol. 19, 1816–1826 (2013).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Ryden, J. C. Denitrification loss from a grassland soil in the field receiving different rates of nitrogen as ammonium nitrate. J. Soil Sci. 34, 355–365 (1983).

    CAS  Article  Google Scholar 

  • 61.

    Rosenkranz, P. et al. N2O, NO and CH4 exchange, and microbial N turnover over a Mediterranean pine forest soil. Biogeosciences 3(2), 121–133 (2006).

    ADS  CAS  Article  Google Scholar 

  • 62.

    Menyailo, O. V. & Hungate, B. A. Stable isotope discrimination during soil denitrification: Production and consumption of nitrous oxide. Glob. Biochem. Cycle. 20, 3. https://doi.org/10.1029/2005GB002527 (2006).

    CAS  Article  Google Scholar 

  • 63.

    Roobroeck, D., Butterbach-Bahl, K., Brüggemann, N. & Boeckx, P. Dinitrogen and nitrous oxide exchanges from an undrained monolith fen: Short-term responses following nitrate addition. Eur. J. Soil Sci. 61, 662–670 (2010).

    CAS  Article  Google Scholar 

  • 64.

    Kammann, C., Grünhage, L., Müller, C., Jacobi, S. & Jäger, H.-J. Seasonal variability and mitigation options for N2O emissions from differently managed grasslands. Environ. Pollut. 102, 179–186 (1998).

    CAS  Article  Google Scholar 

  • 65.

    Yang, X. et al. Nitrous oxide emissions from an agro-pastoral ecotone of northern China depending on land uses. Agric. Ecosyst. Environ. 213, 241–251 (2015).

    CAS  Article  Google Scholar 

  • 66.

    Peng, Q., Qi, Y., Dong, Y., Xiao, S. & He, Y. Soil nitrous oxide emissions from a typical semiarid temperate steppe in inner Mongolia: Effects of mineral nitrogen fertilizer levels and forms. Plant Soil 342, 345–357 (2011).

    CAS  Article  Google Scholar 

  • 67.

    Eggleston, S. et al. (eds) IPCC Guidelines for National Greenhouse Gas Inventories (Institute for Global Environmental Strategies, Hayama, 2006).

    Google Scholar 

  • 68.

    Qin, S. et al. Yield-scaled N2O emissions in a winter wheat-summer corn double-cropping system. Atmos. Environ. 55, 240–244 (2012).

    ADS  CAS  Article  Google Scholar 

  • 69.

    Blackmer, A. M. & Bremner, J. M. Inhibitory effect of nitrate on reduction of N2O to N2 by soil microorganisms. Soil Biol. Biochem. 10, 187–191 (1978).

    CAS  Article  Google Scholar 

  • 70.

    Ghosh, U., Thapa, R., Desutter, T., He, Y. & Chatterjee, A. Saline-sodic soils: Potential sources of nitrous oxide and carbon dioxide emissions?. Pedosphere 27, 65–75 (2017).

    Article  Google Scholar 

  • 71.

    Townsend-Small, A. et al. Nitrous oxide emissions and isotopic composition in urban and agricultural systems in southern California. J. Geophys. Res. Biogeosci. 116, 1–11 (2011).

    Article  CAS  Google Scholar 

  • 72.

    Mariotti, A. et al. Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes. Plant Soil 62, 413–430 (1981).

    CAS  Article  Google Scholar 

  • 73.

    Ibraim, E. et al. Attribution of N2O sources in a grassland soil with laser spectroscopy based isotopocule analysis. Biogeosciences 16(16), 3247–3266 (2019).

    ADS  CAS  Article  Google Scholar 

  • 74.

    Timilsina, A. et al. Potential pathway of nitrous oxide formation in plants. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.01177 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 75.

    Webster, E. A. & Hopkins, D. W. Nitrogen and oxygen isotope ratios of nitrous oxide emitted from soil and produced by nitrifying and denitrifying bacteria. Biol. Fertil. Soils 22, 326–330 (1996).

    CAS  Article  Google Scholar 

  • 76.

    Wrage, N. et al. Distinguishing sources of N2O in European grasslands by stable isotope analysis. Rapid Commun. Mass Spectrom. 18, 1201–1207 (2004).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 77.

    Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Gandhi, H. & Breznak, J. A. Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath. Rapid Commun. Mass Spectrom. 17, 738–745 (2003).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 78.

    Röckmann, T., Kaiser, J. & Brenninkmeijer, C. A. M. The isotopic fingerprint of the pre-industrial and the anthropogenic N2O source. Atmos. Chem. Phys. 3, 315–323 (2003).

    ADS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Resistance to insecticides and synergism by enzyme inhibitors in Aedes albopictus from Punjab, Pakistan

    Gene expression in diapausing rotifer eggs in response to divergent environmental predictability regimes