in

No net insect abundance and diversity declines across US Long Term Ecological Research sites

  • 1.

    Price, P. W., Denno, R. F., Eubanks, M. D., Finke, D. L. & Kaplan, I. Insect Ecology: Behavior, Populations and Communities (Cambridge Univ. Press, 2011).

  • 2.

    Watanabe, M. E. Pollination worries rise as honey bees decline. Science 265, 1170–1170 (1994).

    CAS  PubMed  Google Scholar 

  • 3.

    Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).

    CAS  PubMed  Google Scholar 

  • 4.

    Mathiasson, M. E. & Rehan, S. M. Status changes in the wild bees of north-eastern North America over 125 years revealed through museum specimens. Insect Conserv. Divers. 12, 278–288 (2019).

    Google Scholar 

  • 5.

    Powney, G. D. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 6.

    Fox, R. The decline of moths in Great Britain: a review of possible causes. Insect Conserv. Divers. 6, 5–19 (2013).

    Google Scholar 

  • 7.

    Casey, L. M., Rebelo, H., Rotheray, E. & Goulson, D. Evidence for habitat and climatic specializations driving the long-term distribution trends of UK and Irish bumblebees. Divers. Distrib. 21, 864–875 (2015).

    Google Scholar 

  • 8.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Leather, S. R. “Ecological armageddon”–more evidence for the drastic decline in insect numbers. Ann. Appl. Biol. 172, 1–3 (2018).

    Google Scholar 

  • 10.

    Habel, J. C., Samways, M. J. & Schmitt, T. Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodivers. Conserv. 28, 1343–1360 (2019).

    Google Scholar 

  • 11.

    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Google Scholar 

  • 12.

    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with drivers at landscape level. Nature 574, 671–674 (2019).

    CAS  PubMed  Google Scholar 

  • 13.

    Salcido, D. M., Forister, M. L., Garcia Lopez, H. & Dyer, L. A. Loss of dominant caterpillar genera in a protected tropical forest. Sci. Rep. 10, 422 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

    CAS  PubMed  Google Scholar 

  • 15.

    Wesner, J. S. et al. Loss of potential aquatic–terrestrial subsidies along the Missouri River floodplain. Ecosystems 23, 111–123 (2020).

    Google Scholar 

  • 16.

    Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J. & Haddad, N. M. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS ONE 14, e0216270 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Welti, E. A. R., Roeder, K. A., de Beurs, K. M., Joern, A. & Kaspari, M. Nutrient dilution and climate cycles underlie declines in a dominant insect herbivore. Proc. Natl Acad. Sci. USA 117, 7271–7275 (2020).

    CAS  PubMed  Google Scholar 

  • 18.

    Montgomery, G. A. et al. Is the insect apocalypse upon us? How to find out. Biol. Conserv. 241, 108327 (2020).

    Google Scholar 

  • 19.

    Saunders, M. E., Janes, J. K. & O’Hanlon, J. C. Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation. Bioscience 70, 80–89 (2020).

    Google Scholar 

  • 20.

    Thomas, C. D., Jones, T. H. & Hartley, S. E. “Insectageddon”: a call for more robust data and rigorous analyses. Glob. Change Biol. 25, 1891–1892 (2019).

    Google Scholar 

  • 21.

    Outhwaite, C. L., Gregory, R. D., Chandler, R. E., Collen, B. & Isaac, N. J. B. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nat. Ecol. Evol. 4, 384–392 (2020).

    PubMed  Google Scholar 

  • 22.

    Macgregor, C. J., Williams, J. H., Bell, J. R. & Thomas, C. D. Moth biomass increases and decreases over 50 years in Britain. Nat. Ecol. Evol. 3, 1645–1649 (2019).

    PubMed  Google Scholar 

  • 23.

    Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).

    PubMed  Google Scholar 

  • 24.

    Vellend, M. et al. Estimates of local biodiversity change over time stand up to scrutiny. Ecology 98, 583–590 (2016).

    Google Scholar 

  • 25.

    van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

    CAS  PubMed  Google Scholar 

  • 26.

    Ellis, E. C. Anthropogenic transformation of the terrestrial biosphere. Phil. Trans. R. Soc. A 369, 1010–1035 (2011).

    PubMed  Google Scholar 

  • 27.

    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    CAS  Google Scholar 

  • 28.

    Kanakidou, M. et al. Past, present, and future atmospheric nitrogen deposition. J. Atmos. Sci. 73, 2039–2047 (2016).

    Google Scholar 

  • 29.

    Dornelas, M. et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019).

    PubMed  Google Scholar 

  • 30.

    Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202–205 (2007).

    CAS  PubMed  Google Scholar 

  • 31.

    Finke, D. L. & Snyder, W. E. Niche partitioning increases resource exploitation by diverse communities. Science 321, 1488–1490 (2008).

    CAS  PubMed  Google Scholar 

  • 32.

    Crowder, D. W., Northfield, T. D., Strand, M. R. & Snyder, W. E. Organic agriculture promotes evenness and natural pest control. Nature 466, 109–112 (2010).

    CAS  PubMed  Google Scholar 

  • 33.

    Mack, R. N. et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).

    Google Scholar 

  • 34.

    Sikes, D. S. & Raithel, C. J. A review of hypotheses of decline of the endangered American burying beetle (Silphidae: Nicrophorus americanus Olivier). J. Insect Conserv. 6, 103–113 (2002).

    Google Scholar 

  • 35.

    Harmon, J. P., Stephens, E. & Losey, J. The decline of native coccinellids (Coleoptera: Coccinellidae) in the United States and Canada. J. Insect Conserv. 11, 85–94 (2007).

    Google Scholar 

  • 36.

    Agrawal, A. A. & Inamine, H. Mechanisms behind the monarch’s decline. Science 360, 1294–1296 (2018).

    CAS  PubMed  Google Scholar 

  • 37.

    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 340, 1608–1611 (2013).

    Google Scholar 

  • 38.

    Samson, F. & Knopf, F. Prairie conservation in North America. Bioscience 44, 418–421 (1994).

    Google Scholar 

  • 39.

    Ratajczak, Z. et al. Abrupt change in ecological systems: inference and diagnosis. Trends Ecol. Evol. 33, 513–526 (2018).

    PubMed  Google Scholar 

  • 40.

    Ives, A. R., Einarsson, Á., Jansen, V. A. A. & Gardarsson, A. High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn. Nature 452, 84–87 (2008).

    CAS  PubMed  Google Scholar 

  • 41.

    Spatiotemporal Design (NEON, National Science Foundation – National Ecological Observatory Network, 2019); https://www.neonscience.org/about/about/spatiotemporal-design

  • 42.

    North American Butterfly Count Circles (NABA, North American Butterfly Association, 2019); https://www.naba.org/butter_counts.html

  • 43.

    Burkle, L. A., Marlin, J. C. & Knight, T. M. Plant–pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 340, 1611–1615 (2013).

    Google Scholar 

  • 44.

    Harvey, J. A. et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. 4, 174–176 (2020).

    PubMed  Google Scholar 

  • 45.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS  PubMed  Google Scholar 

  • 46.

    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).

    CAS  PubMed  Google Scholar 

  • 47.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    CAS  Google Scholar 

  • 48.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS  PubMed  Google Scholar 

  • 49.

    Lagos-Kutz, D. et al. The soybean aphid suction trap network: sampling the aerobiological “soup”. Am. Entomol. 66, 48–55 (2020).

    Google Scholar 

  • 50.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • 51.

    De Graaf, R. M., Tilghman, N. G. & Anderson, S. H. Foraging guilds of North American birds. Environ. Manag. 9, 493–536 (1985).

    Google Scholar 

  • 52.

    Ives, A. R., Abbott, K. C. & Ziebarth, N. L. Analysis of ecological time series with ARMA(p, q) models. Ecology 91, 858–871 (2010).

    PubMed  Google Scholar 

  • 53.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Google Scholar 

  • 54.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  • 55.

    Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    CAS  PubMed  Google Scholar 

  • 57.

    Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).

    PubMed  Google Scholar 

  • 58.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-4 (2019).

  • 59.

    Jaccard, P. The distribution of the flora in the alpine zone. N. Phytol. 11, 37–50 (1912).

    Google Scholar 

  • 60.

    Harrison, S., Ross, S. J. & Lawton, J. H. Beta diversity on geographic gradients in Britain. J. Anim. Ecol. 61, 151–158 (1992).

    Google Scholar 

  • 61.

    Barwell, L. J., Isaac, N. J. B. & Kunin, W. E. Measuring β-diversity with species abundance data. J. Anim. Ecol. 84, 1112–1122 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 62.

    Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 72, 367–382 (2003).

    Google Scholar 


  • Source: Ecology - nature.com

    Shrinking deep learning’s carbon footprint

    3 Questions: Asegun Henry on five “grand thermal challenges” to stem the tide of global warming