in

Of city and village mice: behavioural adjustments of striped field mice to urban environments

  • 1.

    Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    McKinney, M. L. Urbanization, biodiversity, and conservation. Bioscience 52, 883 (2002).

    Google Scholar 

  • 3.

    Lowry, H., Lill, A. & Wong, B. B. M. Behavioural responses of wildlife to urban environments: behavioural responses to urban environments. Biol. Rev. 88, 537–549 (2013).

    PubMed  Google Scholar 

  • 4.

    Sih, A. Understanding variation in behavioural responses to human-induced rapid environmental change: a conceptual overview. Anim. Behav. 85, 1077–1088 (2013).

    Google Scholar 

  • 5.

    Sih, A., Ferrari, M. C. O. & Harris, D. J. Evolution and behavioural responses to human-induced rapid environmental change: behaviour and evolution. Evol. Appl. 4, 367–387 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 6.

    Lapiedra, O., Chejanovski, Z. & Kolbe, J. J. Urbanization and biological invasion shape animal personalities. Glob. Change Biol. 23, 592–603 (2017).

    ADS  Google Scholar 

  • 7.

    Sih, A., Stamps, J., Yang, L. H., McElreath, R. & Ramenofsky, M. Behavior as a key component of integrative biology in a human-altered world. Integr. Comp. Biol. 50, 934–944 (2010).

    PubMed  Google Scholar 

  • 8.

    Alberti, M. Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol. Evol. 30, 114–126 (2015).

    PubMed  Google Scholar 

  • 9.

    Sol, D., Lapiedra, O. & González-Lagos, C. Behavioural adjustments for a life in the city. Anim. Behav. 85, 1101–1112 (2013).

    Google Scholar 

  • 10.

    Tuomainen, U. & Candolin, U. Behavioural responses to human-induced environmental change. Biol. Rev. 86, 640–657 (2011).

    PubMed  Google Scholar 

  • 11.

    Seferta, A., Guay, P.-J., Marzinotto, E. & Lefebvre, L. Learning differences between feral pigeons and zenaida doves: the role of neophobia and human proximity. Ethology 107, 281–293 (2001).

    Google Scholar 

  • 12.

    Sol, D., Bacher, S., Reader, S. M. & Lefebvre, L. Brain size predicts the success of mammal species introduced into novel environments. Am. Nat. 172, S63–S71 (2008).

    PubMed  Google Scholar 

  • 13.

    Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P. & Lefebvre, L. Big brains, enhanced cognition, and response of birds to novel environments. Proc. Natl. Acad. Sci. 102, 5460–5465 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 14.

    Webster, S. J. & Lefebvre, L. Problem solving and neophobia in a columbiform–passeriform assemblage in Barbados. Anim. Behav. 62, 23–32 (2001).

    Google Scholar 

  • 15.

    Lowry, H., Lill, A. & Wong, B. B. M. Tolerance of auditory disturbance by an avian urban adapter, the noisy miner: tolerance of auditory disturbance by an avian urban adapter. Ethology 117, 490–497 (2011).

    Google Scholar 

  • 16.

    Rodríguez-Prieto, I., Martín, J. & Fernández-Juricic, E. Individual variation in behavioural plasticity: direct and indirect effects of boldness, exploration and sociability on habituation to predators in lizards. Proc. R. Soc. B 278, 266–273 (2011).

    PubMed  Google Scholar 

  • 17.

    Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. 82, 291–318 (2007).

    PubMed  Google Scholar 

  • 18.

    Gosling, S. D. From mice to men: what can we learn about personality from animal research?. Psychol. Bull. 127, 45–86 (2001).

    CAS  PubMed  Google Scholar 

  • 19.

    Koolhaas, J. M. et al. Coping styles in animals: current status in behavior and stress-physiology. Neurosci. Biobehav. Rev. 23, 925–935 (1999).

    CAS  PubMed  Google Scholar 

  • 20.

    Sih, A., Cote, J., Evans, M., Fogarty, S. & Pruitt, J. Ecological implications of behavioural syndromes: ecological implications of behavioural syndromes. Ecol. Lett. 15, 278–289 (2012).

    PubMed  Google Scholar 

  • 21.

    Wolf, M. & Weissing, F. J. Animal personalities: consequences for ecology and evolution. Trends Ecol. Evol. 27, 452–461 (2012).

    PubMed  Google Scholar 

  • 22.

    Hardman, S. I. & Dalesman, S. Repeatability and degree of territorial aggression differs among urban and rural great tits (Parus major). Sci. Rep. 8, 5042 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Wilson, D. S., Coleman, K., Clark, A. B. & Biederman, L. Shy-bold continuum in pumpkinseed sunfish (Lepomis gibbosus): an ecological study of a psychological trait. J. Comp. Psychol. 107, 250–260 (1993).

    Google Scholar 

  • 24.

    Wilson, A. D. M. & Godin, J.-G.J. Boldness and intermittent locomotion in the bluegill sunfish Lepomis macrochirus. Behav. Ecol. 21, 57–62 (2010).

    Google Scholar 

  • 25.

    Ward, A. J. W., Hart, P. J. B. & Webster, M. M. Boldness is influenced by social context in threespine sticklebacks (Gasterosteus aculeatus). Behaviour 144, 351–371 (2007).

    Google Scholar 

  • 26.

    Dammhahn, M. & Almeling, L. Is risk taking during foraging a personality trait? A field test for cross-context consistency in boldness. Anim. Behav. 84, 1131–1139 (2012).

    Google Scholar 

  • 27.

    Sih, A., Bell, A. M., Johnson, J. C. & Ziemba, R. E. Behavioral syndromes: an integrative overview. Q. Rev. Biol. 79, 241–277 (2004).

    PubMed  Google Scholar 

  • 28.

    Smith, B. R. & Blumstein, D. T. Fitness consequences of personality: a meta-analysis. Behav. Ecol. 19, 448–455 (2008).

    Google Scholar 

  • 29.

    Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. R. Soc. Lond. B 271, 847–852 (2004).

    Google Scholar 

  • 30.

    Sinn, D. L., Apiolaza, L. A. & Moltschaniwskyj, N. A. Heritability and fitness-related consequences of squid personality traits. J. Evol. Biol. 19, 1437–1447 (2006).

    CAS  PubMed  Google Scholar 

  • 31.

    Ariyomo, T. O., Carter, M. & Watt, P. J. Heritability of boldness and aggressiveness in the zebrafish. Behav. Genet. 43, 161–167 (2013).

    PubMed  Google Scholar 

  • 32.

    van Oers, K., de Jong, G., Drent, P. J. & van Noordwijk, A. J. A genetic analysis of avian personality traits: correlated response to artificial selection. Behav. Genet. 34, 611–619 (2004).

    PubMed  Google Scholar 

  • 33.

    Réale, D. & Festa-Bianchet, M. Predator-induced natural selection on temperament in bighorn ewes. Anim. Behav. 65, 463–470 (2003).

    Google Scholar 

  • 34.

    Grand, T. C. Risk-taking behaviour and the timing of life history events: consequences of body size and season. Oikos 85, 467 (1999).

    Google Scholar 

  • 35.

    Fraser, D. F., Gilliam, J. F., Daley, M. J., Le, A. N. & Skalski, G. T. Explaining leptokurtic movement distributions: intrapopulation variation in boldness and exploration. Am. Nat. 158, 124–135 (2001).

    CAS  PubMed  Google Scholar 

  • 36.

    Mazza, V., Jacob, J., Dammhahn, M., Zaccaroni, M. & Eccard, J. A. Individual variation in cognitive style reflects foraging and anti-predator strategies in a small mammal. Sci. Rep. 9, 10157 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Patrick, S. C. & Weimerskirch, H. Personality, foraging and fitness consequences in a long lived seabird. PLoS ONE 9, e87269 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Brown, J. S. & Kotler, B. P. Hazardous duty pay and the foraging cost of predation: foraging cost of predation. Ecol. Lett. 7, 999–1014 (2004).

    Google Scholar 

  • 39.

    Godin, J. G. & Dugatkin, L. A. Female mating preference for bold males in the guppy, Poecilia reticulata. Proc. Natl. Acad. Sci. 93, 10262–10267 (1996).

    ADS  CAS  PubMed  Google Scholar 

  • 40.

    Ariyomo, T. O. & Watt, P. J. Disassortative mating for boldness decreases reproductive success in the guppy. Behav. Ecol. 24, 1320–1326 (2013).

    Google Scholar 

  • 41.

    Collins, S. M., Hatch, S. A., Elliott, K. H. & Jacobs, S. R. Boldness, mate choice and reproductive success in Rissa tridactyla. Anim. Behav. 154, 67–74 (2019).

    Google Scholar 

  • 42.

    Mettke-Hofmann, C., Winkler, H. & Leisler, B. The Significance of ecological factors for exploration and neophobia in parrots. Ethology 108, 249–272 (2002).

    Google Scholar 

  • 43.

    Burstal, J., Clulow, S., Colyvas, K., Kark, S. & Griffin, A. S. Radiotracking invasive spread: are common mynas more active and exploratory on the invasion front?. Biol Invasions https://doi.org/10.1007/s10530-020-02269-7 (2020).

    Article  Google Scholar 

  • 44.

    Carter, A. J., Feeney, W. E., Marshall, H. H., Cowlishaw, G. & Heinsohn, R. Animal personality: what are behavioural ecologists measuring?. Biol. Rev. 88, 465–475 (2013).

    PubMed  Google Scholar 

  • 45.

    Perals, D., Griffin, A. S., Bartomeus, I. & Sol, D. Revisiting the open-field test: what does it really tell us about animal personality?. Anim. Behav. 123, 69–79 (2017).

    Google Scholar 

  • 46.

    Cote, J., Fogarty, S., Weinersmith, K., Brodin, T. & Sih, A. Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis ). Proc. R. Soc. B 277, 1571–1579 (2010).

    PubMed  Google Scholar 

  • 47.

    Dingemanse, N. J., Both, C., Drent, P. J., van Oers, K. & van Noordwijk, A. J. Repeatability and heritability of exploratory behaviour in great tits from the wild. Anim. Behav. 64, 929–938 (2002).

    Google Scholar 

  • 48.

    Dingemanse, N. J. et al. Individual experience and evolutionary history of predation affect expression of heritable variation in fish personality and morphology. Proc. R. Soc. B. 276, 1285–1293 (2009).

    PubMed  Google Scholar 

  • 49.

    Careau, V. et al. Genetic correlation between resting metabolic rate and exploratory behaviour in deer mice (Peromyscus maniculatus): pace-of-life in a muroid rodent. J. Evol. Biol. 24, 2153–2163 (2011).

    CAS  PubMed  Google Scholar 

  • 50.

    Korsten, P., van Overveld, T., Adriaensen, F. & Matthysen, E. Genetic integration of local dispersal and exploratory behaviour in a wild bird. Nat. Commun. 4, 2362 (2013).

    ADS  PubMed  Google Scholar 

  • 51.

    Drent, P. J., van Oers, K. & van Noordwijk, A. J. Realized heritability of personalities in the great tit (Parus major). Proc. R. Soc. Lond. B 270, 45–51 (2003).

    Google Scholar 

  • 52.

    Dingemanse, N. J. & Réale, D. Natural selection and animal personality. Behavior 142, 1159–1184 (2005).

    Google Scholar 

  • 53.

    Both, C., Dingemanse, N. J., Drent, P. J. & Tinbergen, J. M. Pairs of extreme avian personalities have highest reproductive success. J. Anim. Ecol. 74, 667–674 (2005).

    Google Scholar 

  • 54.

    Mutzel, A., Dingemanse, N. J., Araya-Ajoy, Y. G. & Kempenaers, B. Parental provisioning behaviour plays a key role in linking personality with reproductive success. Proc. R. Soc. B 280, 20131019 (2013).

    CAS  PubMed  Google Scholar 

  • 55.

    Dingemanse, N. J., Both, C., van Noordwijk, A. J., Rutten, A. L. & Drent, P. J. Natal dispersal and personalities in great tits (Parus major). Proc. R. Soc. Lond. B 270, 741–747 (2003).

    Google Scholar 

  • 56.

    Haughland, D. L. & Larsen, K. W. Exploration correlates with settlement: red squirrel dispersal in contrasting habitats. J. Anim. Ecol. 73, 1024–1034 (2004).

    Google Scholar 

  • 57.

    Alford, R. A., Brown, G. P., Schwarzkopf, L., Phillips, B. L. & Shine, R. Comparisons through time and space suggest rapid evolution of dispersal behaviour in an invasive species. Wildl. Res. 36, 23 (2009).

    Google Scholar 

  • 58.

    Hoset, K. S. et al. Natal dispersal correlates with behavioral traits that are not consistent across early life stages. Behav. Ecol. 22, 176–183 (2011).

    Google Scholar 

  • 59.

    Debeffe, L. et al. Exploration as a key component of natal dispersal: dispersers explore more than philopatric individuals in roe deer. Anim. Behav. 86, 143–151 (2013).

    Google Scholar 

  • 60.

    Schirmer, A., Herde, A., Eccard, J. A. & Dammhahn, M. Individuals in space: personality-dependent space use, movement and microhabitat use facilitate individual spatial niche specialization. Oecologia 189, 647–660 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Schirmer, A., Hoffmann, J., Eccard, J. A. & Dammhahn, M. My niche: individual spatial niche specialization affects within- and between-species interactions. Proc. R. Soc. B 287, 20192211 (2020).

    PubMed  Google Scholar 

  • 62.

    Duckworth, R. A. & Badyaev, A. V. Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. Proc. Natl. Acad. Sci. 104, 15017–15022 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 63.

    Carrete, M. & Tella, J. L. Behavioral correlations associated with fear of humans differ between rural and urban burrowing owls. Front. Ecol. Evol. 5, 54 (2017).

    Google Scholar 

  • 64.

    Evans, J., Boudreau, K. & Hyman, J. Behavioural syndromes in urban and rural populations of song sparrows. Ethology 116, 588–595 (2010).

    Google Scholar 

  • 65.

    Miranda, A. C., Schielzeth, H., Sonntag, T. & Partecke, J. Urbanization and its effects on personality traits: a result of microevolution or phenotypic plasticity?. Glob. Change Biol. 19, 2634–2644 (2013).

    ADS  Google Scholar 

  • 66.

    Reil, D. et al. Puumala hantavirus infections in bank vole populations: host and virus dynamics in Central Europe. BMC Ecol. 17, 9 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 67.

    Andrzejewski, R., Babińska-Werka, J., Gliwicz, J. & Goszczyński, J. Synurbization processes in population of Apodemus agrarius. I. Characteristics of populations in an urbanization gradient. Acta Theriol. 23, 341–358 (1978).

    Google Scholar 

  • 68.

    Babińska-Werka, J. Food of the striped field mouse in different types of urban green areas. Acta Theriol. 26, 285–299 (1981).

    Google Scholar 

  • 69.

    Liro, A. Variation in weights of body and internal organs of the field mouse in a gradient of urban habitats. Acta Theriol. 30, 359–377 (1985).

    Google Scholar 

  • 70.

    Sikorski, M. D. Craniometric variation of Apodemus agrarius (Pallas, 1771) in urban green areas. Acta Theriol. 27, 71–81 (1982).

    Google Scholar 

  • 71.

    Babińska-Werka, J., Gliwicz, J. & Goszczyński, J. Demographic processes in an urban population of the striped field mouse. Acta Theriol. 26, 275–283 (1981).

    Google Scholar 

  • 72.

    Gortat, T., Rutkowski, R., Gryczynska-Siemiatkowska, A., Kozakiewicz, A. & Kozakiewicz, M. Genetic structure in urban and rural populations of Apodemus agrarius in Poland. Mamm. Biol. 78, 171–177 (2013).

    Google Scholar 

  • 73.

    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).

    Google Scholar 

  • 74.

    Moule, H., Michelangeli, M., Thompson, M. B. & Chapple, D. G. The influence of urbanization on the behaviour of an Australian lizard and the presence of an activity-exploratory behavioural syndrome: impact of urbanization on the delicate skink. J. Zool. 298, 103–111 (2016).

    Google Scholar 

  • 75.

    Boon, A. K., Réale, D. & Boutin, S. Personality, habitat use, and their consequences for survival in North American red squirrels Tamiasciurus hudsonicus. Oikos 117, 1321–1328 (2008).

    Google Scholar 

  • 76.

    Wolf, M., van Doorn, G. S., Leimar, O. & Weissing, F. J. Life-history trade-offs favour the evolution of animal personalities. Nature 447, 581–584 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 77.

    Fischer, J. D., Cleeton, S. H., Lyons, T. P. & Miller, J. R. Urbanization and the predation paradox: the role of trophic dynamics in structuring vertebrate communities. Bioscience 62, 809–818 (2012).

    Google Scholar 

  • 78.

    Shochat, E. Credit or debit? Resource input changes population dynamics of city-slicker birds. Oikos 106, 622–626 (2004).

    Google Scholar 

  • 79.

    Bateman, P. W. & Fleming, P. A. Big city life: carnivores in urban environments: urban carnivores. J. Zool. 287, 1–23 (2012).

    Google Scholar 

  • 80.

    Kettel, E. F., Gentle, L. K., Quinn, J. L. & Yarnell, R. W. The breeding performance of raptors in urban landscapes: a review and meta-analysis. J. Ornithol. 159, 1–18 (2018).

    Google Scholar 

  • 81.

    Vines, A. & Lill, A. Boldness and urban dwelling in little ravens. Wildl. Res. 42, 590 (2015).

    Google Scholar 

  • 82.

    Uchida K, Shimamoto T, Yanagawa H, Koizumi I (2020) Comparison of multiple behavioral traits between urban and rural squirrels. Urban Ecosyst. 1, 1–10 (2020).

  • 83.

    Atwell, J. W. et al. Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation. Behav. Ecol. 23, 960–969 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 84.

    Bókony, V., Kulcsár, A., Tóth, Z. & Liker, A. Personality traits and behavioral syndromes in differently urbanized populations of house sparrows (Passer domesticus). PLoS ONE 7, e36639 (2012).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 85.

    Greenberg, R. The Role of Neophobia and Neophilia in the Development of Innovative Behaviour of Birds. In Animal Innovation (eds Reader, S. M. & Laland, K. N.) 175–196 (Oxford University Press, Oxford, 2003). https://doi.org/10.1093/acprof:oso/9780198526223.003.0008.

    Google Scholar 

  • 86.

    delBarco-Trillo, J. Shyer and larger bird species show more reduced fear of humans when living in urban environments. Biol. Lett. 14, 20170730 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 87.

    Greggor, A. L., Clayton, N. S., Fulford, A. J. C. & Thornton, A. Street smart: faster approach towards litter in urban areas by highly neophobic corvids and less fearful birds. Anim. Behav. 117, 123–133 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 88.

    Seress, G., Bókony, V., Heszberger, J. & Liker, A. Response to predation risk in urban and rural house sparrows: response to predation risk in house sparrows. Ethology 117, 896–907 (2011).

    Google Scholar 

  • 89.

    Rymer, T., Pillay, N. & Schradin, C. Extinction or survival? Behavioral flexibility in response to environmental change in the african striped mouse rhabdomys. Sustainability 5, 163–186 (2013).

    Google Scholar 

  • 90.

    Martin, J. G. A. & Réale, D. Temperament, risk assessment and habituation to novelty in eastern chipmunks Tamias striatus. Anim. Behav. 75, 309–318 (2008).

    Google Scholar 

  • 91.

    Carere, C. & Locurto, C. Interaction between animal personality and animal cognition. Curr. Zool. 57, 491–498 (2011).

    Google Scholar 

  • 92.

    Sih, A. & Del Giudice, M. Linking behavioural syndromes and cognition: a behavioural ecology perspective. Philos. Trans. R. Soc. B 367, 2762–2772 (2012).

    Google Scholar 

  • 93.

    Mettke-Hofmann, C. & Gwinner, E. Differential assessment of environmental information in a migratory and a nonmigratory passerine. Anim. Behav. 68, 1079–1086 (2004).

    Google Scholar 

  • 94.

    Mettke-Hofmann, C., Rowe, K. C., Hayden, T. J. & Canoine, V. Effects of experience and object complexity on exploration in garden warblers (Sylvia borin). J Zool. 268, 405–413 (2006).

    Google Scholar 

  • 95.

    Boyer, N., Réale, D., Marmet, J., Pisanu, B. & Chapuis, J.-L. Personality, space use and tick load in an introduced population of Siberian chipmunks Tamias sibiricus. J. Anim. Ecol. 79, 538–547 (2010).

    PubMed  Google Scholar 

  • 96.

    Barber, I. & Dingemanse, N. J. Parasitism and the evolutionary ecology of animal personality. Philos. Trans. R. Soc. B 365, 4077–4088 (2010).

    Google Scholar 

  • 97.

    Jones, K. A. & Godin, J.-G.J. Are fast explorers slow reactors? Linking personality type and anti-predator behaviour. Proc. R. Soc. B 277, 625–632 (2010).

    PubMed  Google Scholar 

  • 98.

    Sol, D., Griffin, A. S., Bartomeus, I. & Boyce, H. Exploring or avoiding novel food resources? The novelty conflict in an invasive bird. PLoS ONE 6, e19535 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 99.

    Couchoux, C. & Cresswell, W. Personality constraints versus flexible antipredation behaviors: how important is boldness in risk management of redshanks (Tringa totanus) foraging in a natural system?. Behav. Ecol. 23, 290–301 (2012).

    Google Scholar 

  • 100.

    Patergnani, M. et al. Environmental influence on urban rodent bait consumption. J. Pest Sci. 83, 347–359 (2010).

    Google Scholar 

  • 101.

    Lehrer, E. W., Schooley, R. L. & Whittington, J. K. Survival and antipredator behavior of woodchucks (Marmota monax) along an urban-agricultural gradient. Can. J. Zool. 90, 12–21 (2012).

    Google Scholar 

  • 102.

    Niemelä, P. T., Vainikka, A., Forsman, J. T., Loukola, O. J. & Kortet, R. How does variation in the environment and individual cognition explain the existence of consistent behavioral differences?. Ecol. Evol. 3, 457–464 (2013).

    PubMed  Google Scholar 

  • 103.

    Garamszegi, L. Z. et al. Among-year variation in the repeatability, within- and between-individual, and phenotypic correlations of behaviors in a natural population. Behav. Ecol. Sociobiol. 69, 2005–2017 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 104.

    Stewart, I. D. & Oke, T. R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93, 1879–1900 (2012).

    ADS  Google Scholar 

  • 105.

    Semenov, M., Donatelli, M., Stratonovitch, P., Chatzidaki, E. & Baruth, B. ELPIS: a dataset of local-scale daily climate scenarios for Europe. Clim. Res. 44, 3–15 (2010).

    Google Scholar 

  • 106.

    Hall, S. J. et al. Convergence of microclimate in residential landscapes across diverse cities in the United States. Landsc. Ecol. 31, 101–117 (2016).

    Google Scholar 

  • 107.

    Janković, V. A historical review of urban climatology and the atmospheres of the industrialized world: review of urban climatology and the atmospheres of the industrialized world. WIREs Clim. Change 4, 539–553 (2013).

    Google Scholar 

  • 108.

    Grimmond, S. Urbanization and global environmental change: local effects of urban warming. Geogr. J. 173, 83–88 (2007).

    Google Scholar 

  • 109.

    Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24 (1982).

    ADS  Google Scholar 

  • 110.

    Charmantier, A., Demeyrier, V., Lambrechts, M., Perret, S. & Grégoire, A. Urbanization is associated with divergence in pace-of-life in great tits. Front. Ecol. Evol. 5, 53 (2017).

    Google Scholar 

  • 111.

    Badyaev, A. V., Young, R. L., Oh, K. P. & Addison, C. Evolution on a local scale: developmental, functional, and genetic bases of divergence in bill form and associated changes in song structure between adjacent habitats. Evolution 62, 1951–1964 (2008).

    PubMed  Google Scholar 

  • 112.

    Alberti, M., Marzluff, J. & Hunt, V. M. Urban driven phenotypic changes: empirical observations and theoretical implications for eco-evolutionary feedback. Philos. Trans. R. Soc. B 372, 20160029 (2017).

    Google Scholar 

  • 113.

    Buchholz, S., Hannig, K., Möller, M. & Schirmel, J. Reducing management intensity and isolation as promising tools to enhance ground-dwelling arthropod diversity in urban grasslands. Urban Ecosyst. 21, 1139–1149 (2018).

    Google Scholar 

  • 114.

    Seress, G., Lipovits, Á, Bókony, V. & Czúni, L. Quantifying the urban gradient: a practical method for broad measurements. Landsc. Urban Plan. 131, 42–50 (2014).

    Google Scholar 

  • 115.

    Senatsverwaltung für Umwelt, Verkehr und Klimaschutz. Berlin Environmental Atlas—05.08 Biotopes (2016). https://fbinter.stadt-berlin.de/fb/index.jsp?loginkey=showMap&mapId=k_fb_berlinbtk@senstadt. Accessed 15 Dec 2019.

  • 116.

    GIS, E. A. v10. Environmental Systems Research Institute. Inc., Redlands, CA, USA (2011).

  • 117.

    Herde, A. & Eccard, J. A. Consistency in boldness, activity and exploration at different stages of life. BMC Ecol. 13, 49 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 118.

    Young, R. & Johnson, D. N. A fully automated light/dark apparatus useful for comparing anxiolytic agents. Pharmacol. Biochem. Behav. 40, 739–743 (1991).

    CAS  PubMed  Google Scholar 

  • 119.

    Hall, C. S. Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. J. Comp. Psychol. 18, 385–403 (1934).

    Google Scholar 

  • 120.

    Archer, J. Tests for emotionality in rats and mice: a review. Anim. Behav. 21, 205–235 (1973).

    CAS  PubMed  Google Scholar 

  • 121.

    Walsh, R. N. & Cummins, R. A. The open-field test: a critical review. Psychol. Bull. 83, 482–504 (1976).

    CAS  PubMed  Google Scholar 

  • 122.

    Cavigelli, S. A., Michael, K. C. & Ragan, C. M. Behavioral, physiological, and health biases in laboratory rodents: a basis for understanding mechanistic links between human personality and health. In Animal Personalities: Behavior, Physiology, and Evolution (eds Carere, C. & Maestripieri, D.) 441–498 (University of Chicago Press, Chicago, 2013).

    Google Scholar 

  • 123.

    Gharnit, E., Bergeron, P., Garant, D. & Réale, D. Exploration profiles drive activity patterns and temporal niche specialization in a wild rodent. Behav. Ecol. 31, 772–783 (2020).

    Google Scholar 

  • 124.

    Weiss, A. & Adams, M. J. Differential behavioral ecology. In Animal personalities: behavior, physiology and evolution (eds Carere, C. & Maestripieri, D.) 96–123 (University of Chicago Press, Chicago, 2013).

    Google Scholar 

  • 125.

    Russell, P. A. Fear-evoking stimuli. In Fear in Animals and Man (ed. Sluckin, W.) 86–124 (Van Nostrand Reinhold Company, New York, 1979).

    Google Scholar 

  • 126.

    Grossen, N. E. & Kelley, M. J. Species-specific behavior and acquisition of avoidance behavior in rats. J. Comp. Physiol. Psychol. 81, 307–310 (1972).

    CAS  PubMed  Google Scholar 

  • 127.

    Mazza, V., Eccard, J. A., Zaccaroni, M., Jacob, J. & Dammhahn, M. The fast and the flexible: cognitive style drives individual variation in cognition in a small mammal. Anim. Behav. 137, 119–132 (2018).

    Google Scholar 

  • 128.

    Geng, R. et al. Diet and prey consumption of breeding common Kestrel (Falco tinnunculus) in Northeast China. Prog. Nat. Sci. 19, 1501–1507 (2009).

    Google Scholar 

  • 129.

    Jedrzejewska, B. & Jedrzejewski, W. Predation in Vertebrate Communities: The Bialowieza Primeval Forest as a Case Study, vol. 135 (Springer, Berlin, 2013).

    Google Scholar 

  • 130.

    Sándor, A. D. & Ionescu, D. T. Diet of the eagle owl (Bubo bubo) in Braşov Romania. N.-West. J. Zool. 5, 170–178 (2009).

    Google Scholar 

  • 131.

    Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R. A. & McGregor, I. S. The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neurosci. Biobehav. Rev. 29, 1123–1144 (2005).

    PubMed  Google Scholar 

  • 132.

    Adibi, M. Whisker-mediated touch system in rodents: from neuron to behavior. Front. Syst. Neurosci. 13, 40 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 133.

    Lavenex, P. & Schenk, F. Olfactory cues potentiate learning of distant visuospatial information. Neurobiol. Learn. Mem. 68, 140–153 (1997).

    CAS  PubMed  Google Scholar 

  • 134.

    Tomlinson, W. T. & Johnston, T. D. Hamsters remember spatial information derived from olfactory cues. Anim. Learn. Behav. 19, 185–190 (1991).

    Google Scholar 

  • 135.

    Casarrubea, M. et al. Temporal structure of the rat’s behavior in elevated plus maze test. Behav. Brain Res. 237, 290–299 (2013).

    CAS  PubMed  Google Scholar 

  • 136.

    Takahashi, A., Kato, K., Makino, J., Shiroishi, T. & Koide, T. Multivariate analysis of temporal descriptions of open-field behavior in wild-derived mouse strains. Behav. Genet. 36, 763–774 (2006).

    PubMed  Google Scholar 

  • 137.

    Krupa, D. J., Matell, M. S., Brisben, A. J., Oliveira, L. M. & Nicolelis, M. A. L. Behavioral properties of the trigeminal somatosensory system in rats performing whisker-dependent tactile discriminations. J. Neurosci. 21, 5752–5763 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 138.

    von Heimendahl, M., Itskov, P. M., Arabzadeh, E. & Diamond, M. E. Neuronal activity in rat barrel cortex underlying texture discrimination. PLoS Biol. 5, e305 (2007).

    Google Scholar 

  • 139.

    Morita, T., Kang, H., Wolfe, J., Jadhav, S. P. & Feldman, D. E. Psychometric curve and behavioral strategies for whisker-based texture discrimination in rats. PLoS ONE 6, e20437 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 140.

    Lavenex, P. & Schenk, F. Integration of olfactory information in a spatial representation enabling accurate arm choice in the radial arm maze. Learn. Mem. 2, 299–319 (1996).

    CAS  PubMed  Google Scholar 

  • 141.

    Rangassamy, M., Dalmas, M., Féron, C., Gouat, P. & Rödel, H. G. Similarity of personalities speeds up reproduction in pairs of a monogamous rodent. Anim. Behav. 103, 7–15 (2015).

    Google Scholar 

  • 142.

    Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol. Rev. 85, 935–956 (2010).

    Google Scholar 

  • 143.

    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).

    Google Scholar 

  • 144.

    Faraway, J. J. Extending the Linear Model with R (Chapman & Hall/CRC, Boca Raton, 2006).

    Google Scholar 

  • 145.

    Zuur, A. F. Mixed Effects Models and Extensions in Ecology with R (Springer, Berlin, 2009).

    Google Scholar 

  • 146.

    Bates, D. et al. Package ‘lme4’. Convergence 12, 2 (2015).

    Google Scholar 

  • 147.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: linear and nonlinear mixed effects models. R Package Vers. 3, 111 (2013).

    Google Scholar 

  • 148.

    Tabachnick, B. G. & Fidell, L. S. Principal components and factor analysis. Using Multivar. Stat. 4, 582–633 (2001).

    Google Scholar 

  • 149.

    Kaiser, H. F. Unity as the universal upper bound for reliability. Percept. Mot. Skills 72, 218–218 (1991).

    Google Scholar 

  • 150.

    Hadfield, J. D., Wilson, A. J., Garant, D., Sheldon, B. C. & Kruuk, L. E. B. The misuse of BLUP in ecology and evolution. Am. Nat. 175, 116–125 (2010).

    PubMed  Google Scholar 

  • 151.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Google Scholar 


  • Source: Ecology - nature.com

    Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping forsythia

    Lichen-like association of Chlamydomonas reinhardtii and Aspergillus nidulans protects algal cells from bacteria