in

Otolith chemoscape analysis in whiting links fishing grounds to nursery areas

  • 1.

    Kritzer, J. P. & Sale, P. F. Metapopulation ecology in the sea: From Levins’ model to marine ecology and fisheries science. Fish Fish 5, 131–140 (2004).

    Article  Google Scholar 

  • 2.

    Mumby, P. J. Connectivity of reef fish between mangroves and coral reefs: algorithms for the design of marine reserves at seascape scales. Biol. Conserv. 128, 215–222 (2006).

    Article  Google Scholar 

  • 3.

    Laegdsgaard, P. & Johnson, C. Why do juvenile fish utilise mangrove habitats? J. Exp. Mar. Bio. Ecol. https://doi.org/10.1016/S0022-0981(00)00331-2 (2001).

    Article  Google Scholar 

  • 4.

    Cocheret de la Morinière, E. et al. Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: stable isotopes and gut-content analysis. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps246279 (2003).

    Article  Google Scholar 

  • 5.

    Karnauskas, M., Chérubin, L. M. & Paris, C. B. Adaptive significance of the formation of multi-species fish spawning aggregations near submerged capes. PLoS ONE https://doi.org/10.1371/journal.pone.0022067 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Wright, P. J. et al. Integrating the scale of population processes into fisheries management, as illustrated in the sandeel, Ammodytes marinus. ICES J. Mar. Sci. 76, 1453–1463 (2019).

    Article  Google Scholar 

  • 7.

    Thorrold, S. R., Latkoczy, C., Swart, P. K. & Jones, C. M. Natal homing in a marine fish metapopulation. Science 291, 297–299 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Gillanders, B. M. in Ecological Connectivity among Tropical Coastal Ecosystems (ed. Nagelkerken, I.) 457–492 (Springer Netherlands, 2009).

  • 9.

    Kincaid, K. & Rose, G. Effects of closing bottom trawling on fisheries, biodiversity, and fishing communities in a boreal marine ecosystem: The Hawke box off Labrador, Canada. Can. J. Fish. Aquat. Sci. 74, 1490–1502 (2017).

    Article  Google Scholar 

  • 10.

    Le Quesne, W. J. F., Hawkins, S. J. & Shepherd, J. G. A comparison of no-take zones and traditional fishery management tools for managing site-attached species with a mixed larval pool. Fish Fish 8, 181–195 (2007).

    Article  Google Scholar 

  • 11.

    Horwood, J. W., Nichols, J. H. & Milligan, S. Evaluation of closed areas for fish stock conservation. J. Appl. Ecol. 35, 893–903 (2008).

    Article  Google Scholar 

  • 12.

    Wright, P. J., Tobin, D., Gibb, F. M. & Gibb, I. M. Assessing nursery contribution to recruitment: Relevance of closed areas to haddock Melanogrammus aeglefinus. Mar. Ecol. Prog. Ser. 400, 221–232 (2010).

    Article  Google Scholar 

  • 13.

    Lipcius, R. N., Stockhausen, W. T., Eggleston, D. B., Marshall, L. S. & Hickey, B. Hydrodynamic decoupling of recruitment, habitat quality and adult abundance in the Caribbean spiny lobster: Source-sink dynamics? in. Mar. Freshw. Res. 48, 807–815 (1997).

    Article  Google Scholar 

  • 14.

    McBride, R. S. & Able, K. W. Ecology and fate of butterflyfishes, Chaetodon spp., in the temperate, western North Atlantic. Bull. Mar. Sci. 63, 401–416 (1998).

    Google Scholar 

  • 15.

    Dahlgren, C. P. et al. Marine nurseries and effective juvenile habitats: Concepts and applications. Mar. Ecol. Prog. Ser. 312, 291–295 (2006).

    Article  Google Scholar 

  • 16.

    Fogarty, M. J., Fogarty, M. J., Botsford, L. W. & Botsford, L. W. Population connectivity and spatial management of marine fisheries. Oceanography 20, 112–123 (2007).

    Article  Google Scholar 

  • 17.

    Pickett, G. D., Kelley, D. F. & Pawson, M. G. The patterns of recruitment of sea bass, Dicentrarchus labrax L. from nursery areas in England and Wales and implications for fisheries management. Fish. Res. 68, 329–342 (2004).

    Article  Google Scholar 

  • 18.

    Walther, B. D. & Thorrold, S. R. Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps311125 (2006).

    Article  Google Scholar 

  • 19.

    Dorval, E., Jones, C. M., Hannigan, R. & Montfrans, J. van. Relating otolith chemistry to surface water chemistry in a coastal plain estuary. Can. J. Fish. Aquat. Sci. 64, 411–424 (2007).

    CAS  Article  Google Scholar 

  • 20.

    Thomas, O. R. B., Ganio, K., Roberts, B. R. & Swearer, S. E. Trace element–protein interactions in endolymph from the inner ear of fish: implications for environmental reconstructions using fish otolith chemistry. Metallomics 9, 239–249 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Walther, B. D., Kingsford, M. J., O’Callaghan, M. D. & McCulloch, M. T. Interactive effects of ontogeny, food ration and temperature on elemental incorporation in otoliths of a coral reef fish. Environ. Biol. Fishes 89, 441–451 (2010).

    Article  Google Scholar 

  • 22.

    Sturrock, A. M. et al. Physiological influences can outweigh environmental signals in otolith microchemistry research. Mar. Ecol. Prog. Ser. 500, 245–264 (2014).

    CAS  Article  Google Scholar 

  • 23.

    Sturrock, A. M. et al. Quantifying physiological influences on otolith microchemistry. Methods Ecol. Evol. 6, 806–816 (2015).

    Article  Google Scholar 

  • 24.

    Régnier, T. et al. Otolith chemistry reveals seamount fidelity in a deepwater fish. Deep Sea Res. Part I Oceanogr. Res. Pap. 121, 183–189 (2017).

    Article  Google Scholar 

  • 25.

    Gillanders, B. M. Temporal and spatial variability in elemental composition of otoliths: implications for determining stock identity and connectivity of populations. Can. J. Fish. Aquat. Sci. 59, 669–679 (2002).

    CAS  Article  Google Scholar 

  • 26.

    Wright, P. J., Régnier, T., Gibb, F. M., Augley, J. & Devalla, S. Assessing the role of ontogenetic movement in maintaining population structure in fish using otolith microchemistry. Ecol. Evol. 8, 7907–7920 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Wright, P. J., Neat, F. C., Gibb, F. M., Gibb, I. M. & Thordarson, H. Evidence for metapopulation structuring in cod from the west of Scotland and North Sea. J. Fish. Biol. 69, 181–199 (2006).

    CAS  Article  Google Scholar 

  • 28.

    ICES. Working Group for the Celtic Seas Ecoregion (WGCSE). ICES Scientific Reports 1:29, (ICES, 2019).

  • 29.

    Tobin, D., Wright, P. J., Gibb, F. M. & Gibb, I. M. The importance of life stage to population connectivity in whiting (Merlangius merlangus) from the northern European shelf. Mar. Biol. 157, 1063–1073 (2010).

    Article  Google Scholar 

  • 30.

    Burns, N. M., Bailey, D. M. & Wright, P. J. A method to improve fishing selectivity through age targeted fishing using life stage distribution modelling. PLoS ONE https://doi.org/10.1371/journal.pone.0214459 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Symes, D. & Ridgeway, S. Inshore fisheries regulation and management in Scotland; Meeting the challenges of Environmental Integration. Scottish Natural Heritage Commissioned Report F02AA405 (Scottish Natural Heritage and RSPB, 2003).

  • 32.

    Thygesen, U. H., Pedersen, M. W. & Madsen, H. in Tagging and Tracking of Marine Animals with Electronic Devices. Vol. 9, 23–34 (Springer, 2009).

  • 33.

    Gillanders, B. M. Connectivity between juvenile and adult fish populations: do adults remain near their recruitment estuaries? Mar. Ecol. Prog. Ser. 240, 215–223 (2002).

    Article  Google Scholar 

  • 34.

    Elsdon, T. et al. Otolith chemistry to describe movements and life-history parameters of fishes. Oceanogr. Mar. Biol. 46, 297–330 (2008).

    Google Scholar 

  • 35.

    West, J. B., Bowen, G. J., Dawson, T. E. & Tu, K. P. Isoscapes: Understanding Movement, Pattern, and Process on Earth through Isotope Mapping. (Springer, 2010).

  • 36.

    Vander Zanden, H. B. et al. Determining origin in a migratory marine vertebrate: A novel method to integrate stable isotopes and satellite tracking. Ecol. Appl. 25, 320–335 (2015).

    PubMed  Article  Google Scholar 

  • 37.

    Trueman, C. N., MacKenzie, K. M. & St John Glew, K. Stable isotope-based location in a shelf sea setting: accuracy and precision are comparable to light-based location methods. Methods Ecol. Evol. 8, 232–240 (2017).

    Article  Google Scholar 

  • 38.

    Campana, S. E. & Thorrold, S. R. Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations?. Can. J. Fish. Aquat. Sci. 58, 30–38 (2001).

    Article  Google Scholar 

  • 39.

    Elsdon, T. S. & Gillanders, B. M. Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Can. J. Fish. Aquat. Sci. 59, 1796–1808 (2002).

    CAS  Article  Google Scholar 

  • 40.

    Barnes, T. C. & Gillanders, B. M. Combined effects of extrinsic and intrinsic factors on otolith chemistry: Implications for environmental reconstructions. Can. J. Fish. Aquat. Sci. 70, 1159–1166 (2013).

    CAS  Article  Google Scholar 

  • 41.

    Gibb, F. M., Gibb, I. M. & Wright, P. J. Isolation of Atlantic cod (Gadus morhua) nursery areas. Mar. Biol. 151, 1185–1194 (2007).

    Article  Google Scholar 

  • 42.

    Higgins, R. M. et al. Multi-disciplinary fingerprints reveal the harvest location of cod Gadus morhua in the Northeast Atlantic. Mar. Ecol. Prog. Ser. 404, 197–206 (2010).

    Article  Google Scholar 

  • 43.

    Geffen, A. J., Jarvis, K., Thorpe, J. P., Leah, R. T. & Nash, R. D. M. Spatial differences in the trace element concentrations of Irish Sea plaice Pleuronectes platessa and whiting Merlangius merlangus otoliths. J. Sea Res. 50, 247–256 (2003).

    Article  CAS  Google Scholar 

  • 44.

    Mercier, L. et al. Selecting statistical models and variable combinations for optimal classification using otolith microchemistry. Ecol. Appl. 21, 1352–1364 (2011).

    PubMed  Article  Google Scholar 

  • 45.

    Balls, P. et al. Ices baseline survey of trace metals in European shelf waters. ICES J. Mar. Sci. https://doi.org/10.1006/jmsc.1993.1047 (1993).

    Article  Google Scholar 

  • 46.

    IPCS. Barium international programme on chemical safety: environmental health criteria 107. (Environmental Health Criteria, 1990).

  • 47.

    Balls, P. W. Composition of suspended particulate matter from Scottish coastal waters-geochemical implications for the transport of trace metal contaminants. Sci. Total Environ. https://doi.org/10.1016/0048-9697(86)90021-5 (1986).

    Article  Google Scholar 

  • 48.

    Muller, F. L. L., Tranter, M. & Balls, P. W. Distribution and transport of chemical constituents in the Clyde Estuary. Estuar. Coast. Shelf Sci. 39, 105–126 (1994).

    CAS  Article  Google Scholar 

  • 49.

    Gibb, F. M., Régnier, T., Donald, K. & Wright, P. J. Connectivity in the early life history of sandeel inferred from otolith microchemistry. J. Sea Res. 119, 8–16 (2017).

    Article  Google Scholar 

  • 50.

    Xiao, J., Tagliabracci, V. S., Wen, J., Kim, S. A. & Dixon, J. E. Crystal structure of the Golgi casein kinase. Proc. Natl Acad. Sci. USA 110, 10574–10579 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    Liu, Z. et al. Shape-preserving amorphous-to-crystalline transformation of CaCO3 revealed by in situ TEM. Proc. Natl Acad. Sci. USA 117, 3397–3404 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 52.

    Altenritter, M. E. & Walther, B. D. The Legacy of Hypoxia: tracking carryover effects of low oxygen exposure in a demersal fish using geochemical tracers. Trans. Am. Fish. Soc. https://doi.org/10.1002/tafs.10159 (2019).

    Article  Google Scholar 

  • 53.

    Forrester, G. E. & Swearer, S. E. Trace elements in otoliths indicate the use of open- coast versus bay nursery habitats by juvenile California halibut. Mar. Ecol. Prog. Ser. 241, 201–213 (2002).

    CAS  Article  Google Scholar 

  • 54.

    Hamer, P. A. & Jenkins, G. P. Comparison of spatial variation in otolith chemistry of two fish species and relationships with water chemistry and otolith growth. J. Fish. Biol. 71, 1035–1055 (2007).

    CAS  Article  Google Scholar 

  • 55.

    White, J. W., Standish, J. D., Thorrold, S. R. & Warner, R. R. Markov chain monte carlo methods for assigning larvae to natal sites using natural geochemical tags. Ecol. Appl. 18, 1901–1913 (2008).

    PubMed  Article  Google Scholar 

  • 56.

    Stanley, R. R. E. et al. Environmentally mediated trends in otolith composition of juvenile Atlantic cod (Gadus morhua). ICES J. Mar. Sci. 72, 2350–2363 (2015).

    Article  Google Scholar 

  • 57.

    Xu, Q.-S. & Liang, Y.-Z. Monte Carlo cross validation. Chemom. Intell. Lab. Syst. 56, 1–11 (2001).

    CAS  Article  Google Scholar 

  • 58.

    Baudron, A. R., Serpetti, N., Fallon, N. G., Heymans, J. J. & Fernandes, P. G. Can the common fisheries policy achieve good environmental status in exploited ecosystems: The west of Scotland demersal fisheries example. Fish. Res. 211, 217–230 (2019).

    Article  Google Scholar 

  • 59.

    Carlucci, R. et al. Nursery areas of red mullet (Mullus barbatus), hake (Merluccius merluccius) and deep-water rose shrimp (Parapenaeus longirostris) in the Eastern-Central Mediterranean Sea. Estuar. Coast. Shelf Sci. 83, 529–538 (2009).

    CAS  Article  Google Scholar 

  • 60.

    Heath, M. R. et al. Combination of genetics and spatial modelling highlights the sensitivity of cod (Gadus morhua) population diversity in the North Sea to distributions of fishing. ICES J. Mar. Sci. 71, 794–807 (2014).

    Article  Google Scholar 

  • 61.

    Hunter, A., Speirs, D. C. & Heath, M. R. Fishery-induced changes to age and length dependent maturation schedules of three demersal fish species in the Firth of Clyde. Fish. Res. 170, 14–23 (2015).

    Article  Google Scholar 

  • 62.

    Phillipson, J. & Symes, D. ‘A sea of troubles’: Brexit and the fisheries question. Mar. Policy 90, 168–173 (2018).

    Article  Google Scholar 

  • 63.

    Ellis, J. R., Milligan, S. P., Readdy, L., Taylor, N. & Brown, M. J. Spawning and nursery grounds of selected fish species in UK waters. Science Series Technical Report. Vol. 147 (Cefas, 2012).

  • 64.

    European Commission. Impact assessment of discard policy for specific fisheries. Studies and Pilot Projects for Carrying Out the Common Fisheries Policy No FISH/2006/17. 1–289 (IEEP, 2007).

  • 65.

    Hufnagl, M., Peck, M. A., Nash, R. D. M., Pohlmann, T. & Rijnsdorp, A. D. Changes in potential North Sea spawning grounds of plaice (Pleuronectes platessa L.) based on early life stage connectivity to nursery habitats. J. Sea Res. 84, 26–39 (2013).

    Article  Google Scholar 

  • 66.

    Hannesson, R. Zonal attachment of fish stocks and management cooperation. Fish. Res. 140, 149–154 (2013).

    Article  Google Scholar 

  • 67.

    ICES. Report of the Workshop of National Age Readings Coordinators (WKNARC). (ICES, 2011).

  • 68.

    Longerich, H. P., Jackson, S. E. & Gunnther, D. Laser ablation inductively coupled plasma mass spectrometery transient signal data acquisition and analyte concentration calculation. J. Anal. Spectrom. 11, 899–904 (1996).

    CAS  Article  Google Scholar 

  • 69.

    Knick, S. T., Leu, M., Rotenberry, J. T., Hanser, S. E. & Fesenmyer, K. A. Diffuse migratory connectivity in two species of shrubland birds: Evidence from stable isotopes. Oecologia 174, 595–608 (2014).

    PubMed  Article  Google Scholar 

  • 70.

    Burns, N. M., Hopkins, C. R., Bailey, D. M. & Wright, P. J. Connecting fishing grounds to nursery areas using novel otolith isoscape analysis. [Data Collection] University of Glasgow Enlighten database https://doi.org/10.5525/gla.researchdata.1040 (2020).

  • 71.

    Burns, N. M. NeilMBurns/Element_chemoscape_geolocation20: Code for Otolith chemoscape analysis in whiting (Version v1.0). Zenodo. https://doi.org/10.5281/zenodo.4088644 (2020).


  • Source: Ecology - nature.com

    Powering through the coming energy transition

    Massive, swift federal investment needed to address climate change, panelists say