in

Over 90 endangered fish and invertebrates are caught in industrial fisheries

  • 1.

    FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in Action (FAO, 2020).

  • 2.

    Diaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, IPBES (2019).

  • 3.

    FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals (FAO, 2018).

  • 4.

    IUCN. The IUCN Red List of Threatened Species. Version 2019-1 (IUCN, 2019). https://www.iucnredlist.org.

  • 5.

    McClenachan, L., Cooper, A. B., Carpenter, K. E. & Dulvy, N. K. Extinction risk and bottlenecks in the conservation of charismatic marine species. Conserv. Lett. 5, 73–80 (2012).

    Google Scholar 

  • 6.

    McClenachan, L., Cooper, A. B. & Dulvy, N. K. Rethinking trade-driven extinction risk in marine and terrestrial Megafauna. Curr. Biol. 26, 1640–1646 (2016).

    CAS  PubMed  Google Scholar 

  • 7.

    Ripple, W. J. et al. Are we eating the world’s megafauna to extinction? Conserv. Lett. 12, e12627 (2019).

    Google Scholar 

  • 8.

    Di Minin, E., Leader-Williams, N. & Bradshaw, C. J. A. Banning trophy hunting will exacerbate biodiversity loss. Trends Ecol. Evol. 31, 99–102 (2016).

    PubMed  Google Scholar 

  • 9.

    Batavia, C. et al. The elephant (head) in the room: a critical look at trophy hunting. Conserv. Lett. 12, 1–6 (2019).

    ADS  Google Scholar 

  • 10.

    Nelson, M. P., Bruskotter, J. T., Vucetich, J. A. & Chapron, G. Emotions and the ethics of consequence in conservation decisions: lessons from cecil the lion. Conserv. Lett. 9, 302–306 (2016).

    Google Scholar 

  • 11.

    Aron, W., Burke, W. & Freeman, M. M. R. The whaling issue. Mar. Pol. 24, 179–191 (2000).

    Google Scholar 

  • 12.

    Shiffman, D. S., Gallagher, A. J., Wester, J., Macdonald, C. C. & Thaler, A. D. Trophy fishing for species threatened with extinction: a way forward building on a history of conservation. Mar. Pol. 50, 318–322 (2014).

    Google Scholar 

  • 13.

    Dulvy, N. K., Sadovy, Y. & Reynolds, J. D. Extinction vulnerability in marine populations. Fish Fish. 4, 25–64 (2003).

    Google Scholar 

  • 14.

    Pinsky, M. L., Jensen, O. P., Ricard, D. & Palumbi, S. R. Unexpected patterns of fisheries collapse in the world’s oceans. Proc. Natl Acad. Sci. USA 108, 8317–8322 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 15.

    Sumaila, U. R. et al. Updated estimates and analysis of global fisheries subsidies. Mar. Pol. 109, 103695 (2019).

    Google Scholar 

  • 16.

    Vincent, A. C. J., Sadovy de Mitcheson, Y. J., Fowler, S. L. & Lieberman, S. The role of CITES in the conservation of marine fishes subject to international trade. Fish Fish. 15, 563–592 (2014).

    Google Scholar 

  • 17.

    Crespo, G. O. et al. High-seas fish biodiversity is slipping through the governance net. Nat. Ecol. Evol. 3, 1273–1276 (2019).

    PubMed  Google Scholar 

  • 18.

    Reiss, H., Hoarau, G., Dickey-Collas, M. & Wolff, W. J. Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish Fish. 10, 361–395 (2009).

    Google Scholar 

  • 19.

    Collette, B. B. et al. High value and long life—double jeopardy for tunas and billfi shes. Science 333, 291–292 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 20.

    Neubauer, P., Jensen, O. P., Hutchings, J. A. & Baum, J. K. Resilience and recovery of overexploited marine populations. Science 340, 347–349 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 21.

    Hutchings, J. A. Collapse and recovery of marine fishes. Nature 406, 882–885 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 22.

    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).

    ADS  Google Scholar 

  • 23.

    Ye, Y. & Gutierrez, N. L. Ending fishery overexploitation by expanding from local successes to globalized solutions. Nat. Ecol. Evol. 1, 0179 (2017).

    Google Scholar 

  • 24.

    Williams, B. R., Burgess, M. G., Ashe, E., Gaines, S. D. & Randall, R. Marine mammal protections require increased global capacity. Science 354, 1372–1374 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 25.

    Watson, R. & Pauly, D. Systematic distortions in world fisheries catch trends. Nature 414, 534–536 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • 26.

    Powles, H. et al. Assessing and protecting endangered marine species. ICES J. Mar. Sci. 57, 669–676 (2000).

    Google Scholar 

  • 27.

    Dent, F. & Clarke, S. State of the Global Market for Shark Products. FAO Fisheries and Aquaculture Technical Paper no. 590 (Food and Agriculture Organization of the United Nations, Rome 2015).

  • 28.

    Oliver, S., Braccini, M., Newman, S. J. & Harvey, E. S. Global patterns in the bycatch of sharks and rays. Mar. Pol. 54, 86–97 (2015).

    Google Scholar 

  • 29.

    Davies, R. W. D., Cripps, S. J., Nickson, A. & Porter, G. Defining and estimating global marine fisheries bycatch. Mar. Pol. 33, 661–672 (2009).

    Google Scholar 

  • 30.

    Watson, R. A., Green, B. S., Tracey, S. R., Farmery, A. & Pitcher, T. J. Provenance of global seafood. Fish Fish. 17, 585–595 (2016).

    Google Scholar 

  • 31.

    Jabado, R. W. et al. Troubled waters: threats and extinction risk of the sharks, rays and chimaeras of the Arabian Sea and adjacent waters. Fish Fish. 19, 1043–1062 (2018).

    Google Scholar 

  • 32.

    Anticamara, J. A., Watson, R., Gelchu, A. & Pauly, D. Global fishing effort (1950-2010): trends, gaps, and implications. Fish. Res. 107, 131–136 (2011).

    Google Scholar 

  • 33.

    Anderson, S. C., Flemming, J. M., Watson, R. & Lotze, H. K. Serial exploitation of global sea cucumber fisheries. Fish Fish. 12, 317–339 (2011).

    Google Scholar 

  • 34.

    Webb, T. J. & Mindel, B. L. Global patterns of extinction risk in marine and non-marine systems. Curr. Biol. 25, 506–511 (2015).

    CAS  PubMed  Google Scholar 

  • 35.

    Dulvy, et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, e00590 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Anderson, S. C., Flemming, J. M., Watson, R. & Lotze, H. K. Rapid global expansion of invertebrate fisheries: trends, drivers, and ecosystem effects. PLoS ONE 6, 1–9 (2011).

    Google Scholar 

  • 37.

    Willette, D. A. & Cheng, S. H. Delivering on seafood traceability under the new U.S. import monitoring program. AMBIO 47, 25–30 (2018).

    PubMed  Google Scholar 

  • 38.

    Simpfendorfer, C. A. & Dulvy, N. K. Bright spots of sustainable shark fishing. Curr. Biol. 27, R97–R98 (2017).

    CAS  PubMed  Google Scholar 

  • 39.

    Hobbs, C. A. D. et al. Using DNA barcoding to investigate patterns of species utilisation in UK shark products reveals threatened species on sale. Sci. Rep. 9, 1–10 (2019).

    Google Scholar 

  • 40.

    Porszt, E. J., Peterman, R. M., Dulvy, N. K., Cooper, A. B. & Irvine, J. R. Reliability of indicators of decline in abundance. Conserv. Biol. 26, 894–904 (2012).

    PubMed  Google Scholar 

  • 41.

    D’Eon-Eggertson, F., Dulvy, N. K. & Peterman, R. M. Reliable identification of declining populations in an uncertain world. Conserv. Lett. 8, 86–96 (2015).

    Google Scholar 

  • 42.

    Foley, C. M., Lynch, M. A., Thorne, L. H. & Lynch, H. J. Listing foreign species under the endangered species act: a primer for conservation biologists. Bioscience 67, 627–637 (2017).

    Google Scholar 

  • 43.

    Sky, M. B. Getting on the list: politics and procedural maneuvering in cites appendix I and II decisions for commercially exploited marine and timber species. Sustain. Dev. Law Policy 10, 35–40 (2010).

    Google Scholar 

  • 44.

    UNEP‐WCMC (2019). The checklist of CITES species website. http://checklist.cites.org.

  • 45.

    Probst, W. N. How emerging data technologies can increase trust and transparency in fisheries. ICES J. Mar. Sci. 77, 1286–1294 (2019).

    Google Scholar 

  • 46.

    Lewis, S. G. & Boyle, M. The expanding role of traceability in seafood: tools and key initiatives. J. Food Sci. 82, A13–A21 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Kamilaris, A., Fonts, A. & Prenafeta-Boldύ, F. X. The rise of blockchain technology in agriculture and food supply chains. Trends Food Sci. Technol. 91, 640–652 (2019).

    CAS  Google Scholar 

  • 48.

    WWF. WWF-Australia and OpenSc (Panda Labs, 2019). https://www.wwf.org.au/get-involved/panda-labs/opensc#gs.hi7rtb.

  • 49.

    Boulais, O. Exploring Provenance of Tuna using Distributed Ledgers. (Viral Communications, 2019). https://viral.media.mit.edu/pub/tunaprovenance.

  • 50.

    Hosch, G. & Blaha, F. Seafood Traceability for Fisheries Compliance: Country-Level Support for Catch Documentation Schemes. FAO Fisheries and Aquaculture Technical Paper 619 (Food and Agriculture Organization of the United Nations, Rome, 2017).

  • 51.

    Miller, N. A., Roan, A., Hochberg, T., Amos, J. & Kroodsma, D. A. Identifying global patterns of transshipment behavior. Front. Mar. Sci. 5, 1–9 (2018).

    Google Scholar 

  • 52.

    Miller, A. M. M., Bush, S. R. & Mol, A. P. J. Power Europe: EU and the illegal, unreported and unregulated tuna fisheries regulation in the West and Central Pacific Ocean. Mar. Pol. https://doi.org/10.1016/j.marpol.2013.12.009 (2014).

  • 53.

    Osterblom, H. et al. Transnational corporations as ‘keystone actors’ in marine ecosystems. PLoS ONE 10, 1–15 (2015).

    Google Scholar 

  • 54.

    Davies, T. D. & Baum, J. K. Extinction risk and overfishing: reconciling conservation and fisheries perspectives on the status of marine fishes. Sci. Rep. 2, 561 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Hornborg, S., Svensson, M., Nilsson, P. & Ziegler, F. By-catch impacts in fisheries: utilizing the IUCN red list categories for enhanced product level assessment in seafood LCAS. Environ. Manag. 52, 1239–1248 (2013).

    ADS  Google Scholar 

  • 56.

    Dulvy, N. K., Jennings, S., Goodwin, N. B., Grant, A. & Reynolds, J. D. Comparison of threat and exploitation status in North-East Atlantic marine populations. J. Appl. Ecol. 42, 883–891 (2005).

    Google Scholar 

  • 57.

    Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).

    PubMed  Google Scholar 

  • 58.

    Fernandes et al. Coherent assessments of Europe’s marine fishes show regional divergence and megafauna loss. Nat. Ecol. Evol. 1, 0170 (2017).

    Google Scholar 

  • 59.

    Pauly, D., Zeller, D. & Palomares, M. L. D. Sea Around us Concepts, Design and Data. seaaroundus.org (University of British Columbia, Vancouver, BC 2020).

  • 60.

    Watson, R. A. & Tidd, A. Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar. Pol. 93, 171–177 (2018).

    Google Scholar 

  • 61.

    Pauly, D. & Zeller, D. Agreeing with FAO: comments on SOFIA 2018. Mar. Pol. 100, 332–333 (2019).

    Google Scholar 

  • 62.

    Tai, T. C., Cashion, T., Lam, V. W. Y., Swartz, W. & Sumaila, U. R. Ex-vessel fish price database: disaggregating prices for low-priced species from reduction fisheries. Front. Mar. Sci. 4, 1–10 (2017).

    Google Scholar 


  • Source: Ecology - nature.com

    Quorum sensing controls persistence, resuscitation, and virulence of Legionella subpopulations in biofilms

    Evaluating battery revenues for offshore wind farms using advanced modeling