in

Passive acoustic listening stations (PALS) show rapid onset of ecological effects of harmful algal blooms in real time

  • 1.

    Pierce, R. H. & Henry, M. S. Harmful algal toxins of the Florida red tide (Karenia brevis): Natural chemical stressors in South Florida coastal ecosystems. Ecotoxicology 17, 623–631 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Fauquier, D. A. et al. Brevetoxicosis in seabirds naturally exposed to Karenia brevis blooms along the central west coast of Florida. J. Wildl. Dis. 49, 246–260 (2013).

    PubMed  Article  Google Scholar 

  • 3.

    Fire, S. E. et al. Brevetoxin-associated mass mortality event of bottlenose dolphins and manatees along the east coast of Florida USA. Mar. Ecol. Prog. Ser. 526, 241–251 (2015).

    ADS  Article  CAS  Google Scholar 

  • 4.

    Foley, A. M. et al. Assessing Karenia brevis red tide as a mortality factor of sea turtles in Florida USA. Dis. Aquat. Organ. 132, 109–124 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Gannon, D. P. et al. Effects of Karenia brevis harmful algal blooms on nearshore fish communities in southwest Florida. Mar. Ecol. Prog. Ser. 378, 171–186 (2009).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Backer, L. C. et al. Occupational exposure to aerosolized brevetoxins during Florida red tide events: Effects on a healthy worker population. Environ. Health Perspect. 113, 644–649 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Fleming, L. E. et al. Aerosolized red-tide toxins (Brevetoxins) and asthma. Chest 131, 187–194 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Hoagland, P., Anderson, D. M., Kaoru, Y. & White, A. W. The economic effects of harmful algal blooms in the United States: Estimates, assessment issues, and information needs. Estuaries 25, 819–837 (2002).

    Article  Google Scholar 

  • 9.

    Gilbert, P. M., Anderson, D. M., Genstien, P., Granéli, E. & Sellner, K. G. The global, complex phenomena of harmful algal blooms. Oceanography 18, 136–147 (2005).

    Article  Google Scholar 

  • 10.

    Hallegraeff, G. M. Harmful algal blooms: A global overview. in Manual on Harmful Marine Microalgae. Monographs on Oceanographic Methodology 25–49 (IOC-UNE-SCO, 2003).

  • 11.

    Vargo, G. A. A brief summary of the physiology and ecology of Karenia brevis Davis (G. Hansen and Moestrup comb. nov.) red tides on the West Florida Shelf and of hypotheses posed for their initiation, growth, maintenance, and termination. Harmful Algae 8, 573–584 (2009).

    CAS  Article  Google Scholar 

  • 12.

    Heil, C. A. et al. Blooms of Karenia brevis (Davis) G. Hansen & Ø. Moestrup on the West Florida shelf: Nutrient sources and potential management strategies based on a multi-year regional study. Harmful Algae 38, 127–140 (2014).

    Article  Google Scholar 

  • 13.

    Stumpf, R. P. et al. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae 2, 147–160 (2003).

    CAS  Article  Google Scholar 

  • 14.

    Flagherty, K. E. & Landsberg, J. H. Effects of a persistent red tide (Karenia brevis) bloom on community structure and species-specific relative abundance of nekton in a Gulf of Mexico estuary. Estuaries Coasts 34, 417–439 (2011).

    Article  CAS  Google Scholar 

  • 15.

    McHugh, K. A., Allen, J. B., Barleycorn, A. A. & Wells, R. S. Severe Karenia brevis red tides influence juvenile bottlenose dolphin (Tursiops truncatus) behavior in Sarasota Bay Florida. Mar. Mammal Sci. 27, 622–643 (2011).

    Article  Google Scholar 

  • 16.

    Deutsch, C. J. et al. Seasonal movements, migratory behavior, and site fidelity of West Indian manatees along the Atlantic coast of the United States. Wildl. Monogr. 2, 1–77 (2003).

    Google Scholar 

  • 17.

    Gannon, J. G., Scolardi, K. M., Reynolds, J. E. III., Koelsch, J. K. & Kessenich, T. J. Habitat selection by manatees in Sarasota Bay Florida. Mar. Mammal Sci. 23, 133–143 (2007).

    Article  Google Scholar 

  • 18.

    Garrott, R. A. et al. Trends in counts of Florida manatees at winter aggregation sites. J. Wildl. Manag. 58, 642 (1994).

    Article  Google Scholar 

  • 19.

    Semeyn, D. J. et al. Aerial surveys of manatees (Trichechus manatus) in Lee County, Florida, provide insights regarding manatee abundance and real time information for managers and enforcement officers. J. Coast. Conserv. 15, 573–583 (2011).

    Article  Google Scholar 

  • 20.

    Wells, R. S. et al. Bottlenose dolphins as marine ecosystem sentinels: Developing a health monitoring system. EcoHealth 1, 246–254 (2004).

    Article  Google Scholar 

  • 21.

    Fire, S. E. et al. Brevetoxin exposure in bottlenose dolphins (Tursiops truncatus) associated with Karenia brevis blooms in Sarasota Bay Florida. Mar. Biol. 152, 827–834 (2007).

    CAS  Article  Google Scholar 

  • 22.

    Sadchatheeswaran, S., Belanger, M. & Wittnich, C. A comparison of published brevetoxin tissue levels in West Indian manatee, bottlenose dolphin and double-crested cormorants in southwest Florida. 5, 8 (2012).

  • 23.

    Monczak, A. et al. Sound patterns of snapping shrimp, fish, and dolphins in an estuarine soundscape of the southeastern USA. Mar. Ecol. Prog. Ser. 609, 49–68 (2019).

    Article  Google Scholar 

  • 24.

    Walters, S., Lowerre-Barbieri, S., Bickford, J. & Mann, D. Using a passive acoustic survey to identify spotted seatrout spawning sites and associated habitat in Tampa Bay Florida. Trans. Am. Fish. Soc. 138, 88–98 (2009).

    Article  Google Scholar 

  • 25.

    Mann, D. A. Remote sensing of fish using passive acoustic monitoring. Acoust. Today 8, 8 (2012).

    Article  Google Scholar 

  • 26.

    Harris, S. A., Shears, N. T. & Radford, C. A. Ecoacoustic indices as proxies for biodiversity on temperate reefs. Methods Ecol. Evol. 7, 713–724 (2016).

    Article  Google Scholar 

  • 27.

    Parks, S. E., Miksis-Olds, J. L. & Denes, S. L. Assessing marine ecosystem acoustic diversity across ocean basins. Ecol. Inform. 21, 81–88 (2014).

    Article  Google Scholar 

  • 28.

    Parsons, M. J. G., Salgado-Kent, C. P., Marley, S. A., Gavrilov, A. N. & McCauley, R. D. Characterizing diversity and variation in fish choruses in Darwin Harbour. ICES J. Mar. Sci. J. Cons. 73, 2058–2074 (2016).

    Article  Google Scholar 

  • 29.

    Hildebrand, J. Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 395, 5–20 (2009).

    ADS  Article  Google Scholar 

  • 30.

    Quick, J. A. & Henderson, G. E. Effects of Gymnodinium breve red tide on fishes and birds: A preliminary report on behavior, anatomy, hematology, and histopathology. Proc. Gulf Coast Region. Symp. Dis. Aquat. Anim. 2, 85–113 (1982).

    Google Scholar 

  • 31.

    Landsberg, J. H. & Steidinger, K. A. A historical review of Gymnodinium breve red tides implicated in mass mortalities of the manatee (Trichechus manatus latirostris) in Florida, USA. in In: Reguera B, Blanco J, Fernandez ML, Wyatt T (eds) (UNESCO, 1998).

  • 32.

    Walters, S., Lowerre-Barbieri, S., Bickford, J., Tustison, J. & Landsberg, J. Effects of Karenia brevis red tide on the spatial distribution of spawning aggregations of sand seatrout Cynoscion arenarius in Tampa Bay Florida. Mar. Ecol. Prog. Ser. 479, 191–202 (2013).

    ADS  Article  Google Scholar 

  • 33.

    FWC. Fish Kill Database. https://public.myfwc.com/fwri/FishKillReport.

  • 34.

    Baden, D. G. & Mende, T. Toxicity of two toxins from the Florida red tide marine dinoflagellate Ptychdiscus brevis. Toxicon 20, 457–461 (1982).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Steidinger, K. A., Burklew, M. & Ingle, R. The effects of Gymnodinium breve toxin on estuarine animals. In Marine pharmacognosy: action of marine toxins at the cellular level 179–202 (Academic Press, New York, 1973).

    Google Scholar 

  • 36.

    Landsberg, J. H. The effects of harmful algal blooms on aquatic organisms. Rev. Fish. Sci. 10, 113–390 (2002).

    Article  Google Scholar 

  • 37.

    Fire, S. E. et al. Prevalence of brevetoxins in prey fish of bottlenose dolphins in Sarasota Bay Florida. Mar. Ecol. Prog. Ser. 368, 283–294 (2008).

    ADS  Article  Google Scholar 

  • 38.

    Flewelling, L. J. et al. Red tides and marine mammal mortalities: Brevetoxicosis. Nature 435, 755–756 (2005).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Naar, J. P. et al. Brevetoxins, like ciguatoxins, are potent ichthyotoxic neurotoxins that accumulate in fish. Toxicon 50, 707–723 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    The Manatee County Water Atlas. https://manatee.wateratlas.usf.edu/ (2020).

  • 41.

    Caldwell, M. C. & Caldwell, D. K. Individualized whistle contours in bottlenosed dolphins (Tursiops truncatus). Nature 207, 434–435 (1965).

    ADS  Article  Google Scholar 

  • 42.

    O’Shea, T. J. & Poché, L. B. Aspects of underwater sound communication in Florida manatees (Trichechus manatus latirostris). J. Mammal. 87, 1061–1071 (2006).

    Article  Google Scholar 

  • 43.

    Fisheries, N. 2018–2019 Bottlenose dolphin unusual mortality event Southwest Florida | NOAA Fisheries. /southeast/marine-life-distress/2018–2019-bottlenose-dolphin-unusual-mortality-event-southwest (2019).

  • 44.

    Red Tide Manatee Mortalities. Florida Fish and Wildlife Conservation Commission. https://myfwc.com/research/manatee/rescue-mortality-response/statistics/mortality/red-tide/.

  • 45.

    Montie, E. W. et al. Acoustic monitoring indicates a correlation between calling and spawning in captive spotted seatrout (Cynoscion nebulosus). PeerJ 5, e2944 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Myrberg, A. A., Ha, S. J. & Shamblott, M. J. The sounds of bicolor damselfish (Pomacentrus partitus): Predictors of body size and a spectral basis for individual recognition and assessment. J. Acoust. Soc. Am. 94, 3067–3070 (1993).

    ADS  Article  Google Scholar 

  • 47.

    Tyson, R. B. & Wells, R. S. Sarasota Bay/Little Sarasota Bay Bottlenose Dolphin Abundance Estimates: 2015. 22 http://doi.org/10.7289/V5/RD-PRBD-2016-02 (2016).

  • 48.

    Lund, J., Kipling, C. & LeCren, E. The inverted microscope method of estimating algal numbers and the statistical basis of estimations of counting. Hydrobiology 2, 143–170 (1958).

    Article  Google Scholar 

  • 49.

    Sournia, A. Phytoplankton Manual. in Monographs on oceanographic methodology vol. 6 (UNESCO, 1978).

  • 50.

    Sellner, K., Doucette, G. & Kirkpatrick, G. Harmful algal blooms: Causes, impacts, and detection. J. Ind. Microbiol. Biotechnol. 30, 383–406 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    Sprague, M. W. & Luczkovich, J. J. Measurement of an individual silver perch Bairdiella chrysoura sound pressure level in a field recording. J. Acoust. Soc. Am. 116, 3186–3191 (2004).

    ADS  PubMed  Article  Google Scholar 

  • 52.

    Breder, C. M. Jr. Seasonal and diurnal occurrences of fish sounds in a small Florida bay. Am. Mus. Nat. Hist. 138, 325–378 (1968).

    Google Scholar 

  • 53.

    Fish, M. P. & Mowbray, W. H. Sounds of Western North Atlantic fishes. A reference file of biological underwater sounds (Johns Hopkins Press, Baltimore, 1970).

    Google Scholar 

  • 54.

    NOAA Solar Calculator. https://www.esrl.noaa.gov/gmd/grad/solcalc/.

  • 55.

    Wilke, C. O. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’. (2019).

  • 56.

    Grolemund & Wickham. lubridate. https://lubridate.tidyverse.org/ (2011).

  • 57.

    South, A. rnaturalearth: World Map Data from Natural Earth. https://CRAN.R-project.org/package=rnaturalearth (2017).

  • 58.

    Pebesma. sf. https://github.com/r-spatial/sf/ (2018).

  • 59.

    Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 2 (2019).

    Article  Google Scholar 

  • 60.

    Garnier. viridis. https://cran.r-project.org/package=viridis (2018).

  • 61.

    Florida Fish and Wildlife Conservation Commission GIS & Mapping Data Downloads. https://geodata.myfwc.com/.

  • 62.

    R Core Team. https://www.R-project.org/ (2019).

  • 63.

    Bauer, D. F. Constructing confidence sets using rank statistics. J. Am. Stat. Assoc. 67, 687–690 (1972).

    MATH  Article  Google Scholar 

  • 64.

    Hollander, M. & Wolfe, D. A. Nonparametric Statistical Methods 27–33 (John Wiley & Sons, New York, 1973).

    Google Scholar 

  • 65.

    Hollander, M. & Wolfe, D. A. Nonparametric Statistical Methods 68–75 (John Wiley & Sons, New York, 1973).

    Google Scholar 


  • Source: Ecology - nature.com

    More than a meal

    Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach