in

Phenotypic variation, functional traits repeatability and core collection inference in Synsepalum dulcificum (Schumach & Thonn.) Daniell reveals the Dahomey Gap as a centre of diversity

  • 1.

    Kurihara, K. & Beidler, L. M. Taste-modifying protein from miracle fruit. Science 161, 1241–1243 (1968).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 2.

    Achigan-Dako, E. G., Tchokponhoué, D. A., N’Danikou, S., Gebauer, J. & Vodouhè, R. S. Current knowledge and breeding perspectives for the miracle plant Synsepalum dulcificum (Schum. et Thonn.) Daniell. Genet. Resour. Crop. Evol. 62, 465–476 (2015).

  • 3.

    Fandohan, A. B. et al. Usages traditionnels et valeur économique de Synsepalum dulcificum au Sud-Bénin. Bois For. Trop. 332, 17–30 (2017).

    Article  Google Scholar 

  • 4.

    Oumorou, M., Dah-Dovonon, J., Aboh, B., Hounsoukaka, M. & Sinsin, B. Contribution á la conservation de Synsepalum dulcificum: régénération et importance socio-économique dans le département de l’ouémé (Bénin). Ann. Sci. Agron. 14, 101–120 (2010).

    Google Scholar 

  • 5.

    Rodrigues, J. F., da Silva Andrade, R., Bastos, S. C., Coelho, S. B. & Pinheiro, A. C. M. Miracle fruit: An alternative sugar substitute in sour beverages. Appetite 107, 645–653 (2016).

    Article  PubMed  Google Scholar 

  • 6.

    Andrade, A. C. et al. Effect of different quantities of miracle fruit on sour and bitter beverages. LWT 99, 89–97 (2019).

    CAS  Article  Google Scholar 

  • 7.

    Swamy, K. B., Hadi, S. A., Sekaran, M. & Pichika, M. R. The clinical effects of Synsepalum dulcificum: a review. J. Med. Food. 17, 1165–1169 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    Chen, C. C., Liu, I. M. & Cheng, J. T. Improvement of insulin resistance by miracle fruit (Synsepalum dulcificum) in fructose-rich chow-fed rats. Phytother. Res. 20, 987–992 (2006).

    Article  PubMed  Google Scholar 

  • 9.

    Han, Y. C., Wu, J. Y. & Wang, C. K. Modulatory effects of miracle fruit ethanolic extracts on glucose uptake through the insulin signaling pathway in C2C12 mouse myotubes cells. Food Sci. Nutr. 7, 1035–1042 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 10.

    Obafemi, T. O., Akinmoladun, A. C., Olaleye, M. T., Agboade, S. O. & Onasanya, A. A. Antidiabetic potential of methanolic and flavonoid-rich leaf extracts of Synsepalum dulcificum in type 2 diabetic rats. J. Ayurveda Integr. Med. 8, 238–246. https://doi.org/10.1016/j.jaim.2017.01.008 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Buckmire, R. & Francis, F. Pigments of miracle fruit, Synsepalum dulcificum, Schum, as potential food colorants. J. Food Sci. 43, 908–911 (1978).

    CAS  Article  Google Scholar 

  • 12.

    Del Campo, R., Zhang, Y. & Wakeford, C. Effect of miracle fruit (Synsepalum dulcificum) seed oil (MFSO®) on the measurable improvement of hair breakage in women with damaged hair: a randomized, double-blind, placebo-controlled, eight-month trial. J. Clin. Aesthet. Dermat. 10, 39–48 (2017).

    Google Scholar 

  • 13.

    Gorin, S. et al. Beneficial effects of an investigational wristband containing Synsepalum dulcificum (miracle fruit) seed oil on the performance of hand and finger motor skills in healthy subjects: a randomized controlled preliminary study. Phytother. Res. 32, 321–332 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 14.

    Adomou, A. Vegetation patterns and environmental gradients in Benin PhD thesis, University of Wageningen, (2005).

  • 15.

    Tchokponhoué, D. et al. Regeneration ability and seedling growth in the miracle plant Synsepalum dulcificum (Schumach. & Thonn.) Daniell. Fruits 73, 13–21 (2018).

  • 16.

    Tchokponhoué, D. A., N’Danikou, S., Houéto, J. S. & Achigan-Dako, E. G. Shade and nutrient-mediated phenotypic plasticity in the miracle plant Synsepalum dulcificum (Schumach. & Thonn.) Daniell. Sci. Rep. 9(5137), 1–11 (2019).

  • 17.

    Tchokponhoué, D. A., N’Danikou, S., Hale, I., Van Deynze, A. & Achigan-Dako, E. G. Early fruiting in Synsepalum dulcificum (Schumach. & Thonn.) Daniell juveniles induced by water and inorganic nutrient management. F1000Res. 6, 1–17 (2017).

  • 18.

    Choi, S. E. & Garza, J. Effects of different miracle fruit products on the sensory characteristics of different types of sour foods by descriptive analysis. J. Food Sci. 85, 36–49 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 19.

    Tafazoli, S. et al. Safety assessment of miraculin using in silico and in vitro digestibility analyses. Food Chem. Toxicol. 133(110762), 1–10 (2019).

    Google Scholar 

  • 20.

    Chibuzor, I. A., Bukola, O., Adejoke, A. O. & Chidozie, O. P. Genetic assessment of the shrub Synsepalum dulcificum (Schumach & Thonn.) Daniell in Nigeria using the Randomly Amplified Polymorphic DNA (RAPD). Int. J. Genet. Genom. 4, 45–50 (2017).

  • 21.

    Sogbohossou, E. D. et al. Association between vitamin content, plant morphology and geographical origin in a worldwide collection of the orphan crop Gynandropsis gynandra (Cleomaceae). Planta 250, 933–947 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Singh, K., Sharma, Y. P. & Gairola, S. Morphological characterization of wild Rosa L. germplasm from the Western Himalaya, India. Euphytica 216(41), 1–24. https://doi.org/https://doi.org/10.1007/s10681-020-2567-2 (2020).

  • 23.

    Sun, W. et al. Multivariate analysis reveals phenotypic diversity of Euscaphis japonica population. PLoS ONE 14, 1. https://doi.org/10.1371/journal.pone.0219046 (2019).

    CAS  Article  Google Scholar 

  • 24.

    Yazdanpour, F., Khadivi, A. & Etemadi-Khah, A. Phenotypic characterization of black raspberry to select the promising genotypes. Sci. Hortic. Amsterdam 235, 95–105. https://doi.org/10.1016/j.scienta.2018.02.071 (2018).

    CAS  Article  Google Scholar 

  • 25.

    Fereidoonfar, H., Salehi-Arjmand, H., Khadivi, A. & Akramian, M. Morphological variability of sumac (Rhus coriaria L.) germplasm using multivariate analysis. Ind. Crops Prod. 120, 162–170, https://doi.org/https://doi.org/10.1016/j.indcrop.2018.04.034 (2018).

  • 26.

    Norouzi, E., Erfani-Moghadam, J., Fazeli, A. & Khadivi, A. Morphological variability within and among three species of Ziziphus genus using multivariate analysis. Sci. Hortic. Amsterdam 222, 180–186. https://doi.org/10.1016/j.scienta.2017.05.016 (2017).

    Article  Google Scholar 

  • 27.

    Khadivi-Khub, A. & Anjam, K. Morphological characterization of Prunus scoparia using multivariate analysis. Plant Syst. Evol. 300, 1361–1372 (2014).

    Article  Google Scholar 

  • 28.

    Vihotogbé, R., van den Berg, R. G. & Sosef, M. S. Morphological characterization of African bush mango trees (Irvingia species) in West Africa. Genet. Resour. Crop. Evol. 60, 1597–1614 (2013).

    Article  Google Scholar 

  • 29.

    Ouborg, N. J. Integrating population genetics and conservation biology in the era of genomics. Biol. Lett. 6, 3–6 (2010).

    Article  PubMed  Google Scholar 

  • 30.

    Martínez-García, P. J. et al. Predicting breeding values and genetic components using generalized linear mixed models for categorical and continuous traits in walnut (Juglans regia). Tree Genet. Genomes 13, 109 (2017).

    Article  Google Scholar 

  • 31.

    Falconer, D. S. Introduction to quantitative genetics. (Oliver And Boyd; Edinburgh; London, 1960).

  • 32.

    Fonseca, C. E. L. d., Morais, F. M. d., Gonçalves, H. M., Aquino, F. d. G. & Rocha, F. S. Repeatability of fruit traits from two Hancornia speciosa populations from the core region of the Brazilian Cerrado. Pesqui. Agropecu Bras. 53, 710–716 (2018).

  • 33.

    Zou, S., Yao, X., Zhong, C., Zhao, T. & Huang, H. Genetic analysis of fruit traits and selection of superior clonal lines in Akebia trifoliate (Lardizabalaceae). Euphytica 214(111), 1–9. https://doi.org/10.1007/s10681-018-2198-z (2018).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Sanou, H. et al. Phenotypic variation of agromorphological traits of the shea tree, Vitellaria paradoxa CF Gaertn., in Mali. Genet. Resour. Crop. Evol. 53, 145–161 (2006).

  • 35.

    Albuquerque, A. S., Bruckner, C. H., Cruz, C. D., Salomão, L. C. C. & Neves, J. C. L. Repeatability and correlations among peach physical traits. Crop Breed. Appl. Biot. 4, 441–445 (2004).

    Article  Google Scholar 

  • 36.

    Belaj, A. et al. Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet. Genomes 8, 365–378 (2012).

  • 37.

    Le Cunff, L. et al. Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plt. Biol. 8:31, 1–12 (2008).

  • 38.

    Mahmoodi, R. et al. Development of a core collection in Iranian walnut (Juglans regia L.) germplasm using the phenotypic diversity. Sci. Hortic. Amsterdam 249, 439–448 (2019).

  • 39.

    Tchokponhoué, D. A., N’Danikou, S. & Achigan-Dako, E. G. A combination of approaches evidenced seed storage behaviour in the miracle berry Synsepalum dulcificum (Schumach. et Thonn.) Daniell. BMC Plt. Biol. 19:117, 1–13 (2019).

  • 40.

    Edesi, J., Tolonen, J., Ruotsalainen, A. L., Aspi, J. & Häggman, H. Cryopreservation enables long-term conservation of critically endangered species Rubus humulifolius. Biodivers. Conserv. 29, 303–314. https://doi.org/10.1007/s10531-019-01883-9 (2020).

    Article  Google Scholar 

  • 41.

    Bharuth, V., Naidoo, C., Pammenter, N. W., Lamb, J. M. & Moodley, T. Responses to chilling of recalcitrant seeds of Ekebergia capensis from different provenances. S. Afr. J. Bot. 130, 8–24 (2020).

    Article  Google Scholar 

  • 42.

    Leal, M. E. The African rain forest during the Last Glacial Maximum an archipelago of forests in a sea of grass. (2004).

  • 43.

    Swenson, U., Richardson, J. E. & Bartish, I. V. Multi-gene phylogeny of the pantropical subfamily Chrysophylloideae (Sapotaceae): evidence of generic polyphyly and extensive morphological homoplasy. Cladistics 24, 1006–1031 (2008).

    Article  Google Scholar 

  • 44.

    Juhé-Beaulaton, D. “Fèves”, “pois” et “grains” dans le golfe de Guinée : problèmes d’identification des plantes dans les sources historiques. in Plantes et paysages d’Afrique, une histoire à explorer (ed Chastanet M) 45–68 (1998).

  • 45.

    Inglett, G. E. & May, J. F. Tropical plants with unusual taste properties. Econ. Bot. 22, 326–331. https://doi.org/10.1007/BF02908127 (1968).

    Article  Google Scholar 

  • 46.

    Salzmann, U. & Hoelzmann, P. The Dahomey Gap: an abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene. Holocene 15, 190–199. https://doi.org/10.1191/0959683605hl799rp (2005).

    ADS  Article  Google Scholar 

  • 47.

    Booth, A. The Niger, the Volta and the Dahomey Gap as geographic barriers. Evolution 12, 48–62 (1958).

    Article  Google Scholar 

  • 48.

    White, F. The vegetation of Africa: a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. (1983).

  • 49.

    Niñez, V. Household gardens: theoretical and policy considerations. Agr. Syst. 23, 167–186. https://doi.org/10.1016/0308-521X(87)90064-3 (1987).

    Article  Google Scholar 

  • 50.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,Vienna, Austria. https://www.R-project.org/. (2019).

  • 51.

    Peterson, B. G. et al. ‘Performance analytics’: econometric tools for performance and risk analysis. R Team Cooperation. (2018).

  • 52.

    Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. smatr 3–an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259 (2012).

    Article  Google Scholar 

  • 53.

    Moon, K.-W. Interactive plot. in Learn ggplot2 Using Shiny App (ed Keon-Woong Moon) 295–347 (Springer, 2016).

  • 54.

    Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Article  Google Scholar 

  • 55.

    YiLan, L. & RuTong, Z. clustertend: Check the Clustering tendency. R package version 1 (2015).

  • 56.

    Kassambara, A. & Mundt, F. Factoextra: extract and visualize the results of multivariate data analyses. R package version 1, 4 (2017).

    Google Scholar 

  • 57.

    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).

    Article  Google Scholar 

  • 58.

    De Beukelaer, H., Davenport, G. F. & Fack, V. Core Hunter 3: flexible core subset selection. BMC Bioinformatics 19(203), 1–12 (2018).

    Google Scholar 

  • 59.

    Kim, K.-W. et al. PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23, 2155–2162 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 60.

    Hu, J., Zhu, J. & Xu, H. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theor. Appl. Genet. 101, 264–268 (2000).

    CAS  Article  Google Scholar 

  • 61.

    61Wickham, H. ggplot2: elegant graphics for data analysis. (Springer, 2016).

  • 62.

    Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).

    Article  Google Scholar 

  • 63.

    South, A. Rworldxtra: Country boundaries at high resolution. R package version 1 (2012).

  • 64.

    South, A. rnaturalearth: World map data from Natural Earth. R package version 0.1. 0 (2017).

  • 65.

    Salako, V. K. et al. Home gardens: an assessment of their biodiversity and potential contribution to conservation of threatened species and crop wild relatives in Benin. Genet. Resour. Crop. Evol. 61, 313 (2014).

    Article  Google Scholar 

  • 66.

    van Rompaey, R. S. Forest gradients in West Africa: a spatial gradient analysis, Wageningen, (1993).

  • 67.

    Gwali, S. et al. Morphological variation among shea tree (Vitellaria paradoxa subsp. nilotica)‘ethnovarieties’ in Uganda. Genet. Resour. Crop. Evol. 59, 1883–1898 (2012).

  • 68.

    Metougui, M. L., Mokhtari, M., Maughan, P. J., Jellen, E. N. & Benlhabib, O. Morphological variability, heritability and correlation studies within an argan tree population (Argania spinosa (L.) Skeels) preserved in situ. Int. J. Agr. For. 7, 42–51 (2017).

  • 69.

    Tsobeng, A. et al. Tree-to-tree variation in fruit of three populations of Trichoscypha acuminata in Cameroon. Sci. Afr. 7, 1–12 (2020).

    Google Scholar 

  • 70.

    Omondi, M. et al. Fruit morphological diversity and productivity of baobab (Adansonia digitata L.) in coastal and lower eastern Kenya. For. Trees Livelihoods 28, 266–280 (2019).

    Article  Google Scholar 

  • 71.

    Abdulai, I., Krutovsky, K. V. & Finkeldey, R. Morphological and genetic diversity of shea trea (Vitellaria paradoxa) in the savannah regions of Ghana. Genet Res Crop Evol 64, 1253–1268 (2017).

    Article  Google Scholar 

  • 72.

    Karambiri, M., Elias, M., Vinceti, B. & Grosse, A. Exploring local knowledge and preferences for shea (Vitellaria pradoxa) ethnovarieties in Soutwest Burkina-Faso through a gender and ethnic lens. For. Trees Livelihoods 26, 13–28 (2016).

    Article  Google Scholar 

  • 73.

    Ayensu, E. S. Morphology and anatomy of Synsepalum dulcificum (Sapotaceae). Bot. J. Linn. Soc. 65, 179–187 (1972).

    Article  Google Scholar 

  • 74.

    Lim, T. K. in Edible medicinal and non-medicinal plants Vol. 6 (ed T.K. Lim) 146–150 (Springer, Dordrecht, 2013).

  • 75.

    Huang, W., Chung, H. Y., Xuan, W., Wang, G. & Li, Y. The cholesterol-lowering activity of miracle fruit (Synsepalum dulcificum). J. Food Biochem. 1, e13185. https://doi.org/10.1111/jfbc.13185 (2020).

    Article  Google Scholar 

  • 76.

    Ahmed, A. A. O. et al. Tree-to-tree variability in fruits and kernels of a Balanites aegyptiaca (L.) Del. population grown in Sudan. Trees 34, 111–119 (2020).

  • 77.

    Zou, S., Yao, X., Zhong, C., Zhao, T. & Huang, H. Effectiveness of recurrent selection in Akebia trifoliata (Lardizabalaceae) breeding. Sci. Hortic. Amsterdam 246, 79–85 (2019).

    Article  Google Scholar 

  • 78.

    Houehanou, T. D. et al. Morphological trait variation and relationships of Afzelia africana Sm. caused by climatic conditions and anthropogenic disturbance in Benin (West Africa). Genet. Resour. Crop. Evol. 66, 1091–1105 (2019).

  • 79.

    Gouwakinnou, G. N., Assogbadjo, A. E., Lykke, A. M. & Sinsin, B. Phenotypic variations in fruits and selection potential in Sclerocarya birrea subsp. birrea. Sci. Hortic. Amsterdam 129, 777–783 (2011).

  • 80.

    Cotterill, P. P. & Dean, C. A. Successful tree breeding with index selection (CSIRO, Division of Forestry and Forest Products, 1990).

    Google Scholar 

  • 81.

    Zobel, B. & Talbert, J. Applied forest tree improvement. (John Wiley & Sons, 1984).

  • 82.

    Atangana, A. R. et al. Tree-to-tree variation in stearic and oleic acid content in seed fat from Allanblackia floribunda from wild stands: potential for tree breeding. Food Chem. 126, 1579–1585 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 83.

    Shelbourne, C. Genetic gains from different kinds of breeding population and seed or plant production population. S. Afr. For. J. 160, 49–65 (1992).

    Google Scholar 

  • 84.

    Leakey, R. & Page, T. The ‘ideotype concept’and its application to the selection of cultivars of trees providing agroforestry tree products. For. Trees Livelihoods 16, 5–16 (2006).

    Article  Google Scholar 

  • 85.

    Bhattacharjee, R., Khairwal, I., Bramel, P. J. & Reddy, K. Establishment of a pearl millet [Pennisetum glaucum (L.) R. Br.] core collection based on geographical distribution and quantitative traits. Euphytica 155, 35–45 (2007).

  • 86.

    Escribano, P., Viruel, M. & Hormaza, J. in XII EUCARPIA Symposium on Fruit Breeding and Genetics 814. 67–70.

  • 87.

    Duan, H. et al. Genetic characterization of Chinese fir from six provinces in southern China and construction of a core collection. Sci. Rep. 7, 1–10 (2017).

    Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale

    Power-free system harnesses evaporation to keep items cool