in

Phylogenetic comparison of egg transparency in ascidians by hyperspectral imaging

  • 1.

    Herring, P. J. The Biology of the Deep Ocean (Oxford University Press, Oxford, 2007).

    Google Scholar 

  • 2.

    Chapman, G. Transparency in organisms. Experientia 32, 123–125 (1976).

    Article  Google Scholar 

  • 3.

    Bagge, L. E. Not as clear as it may appear: Challenges associated with transparent camouflage in the ocean. Integr. Comp. Biol. 59, 1653–1663 (2019).

    Article  Google Scholar 

  • 4.

    Johnsen, S. Hide and seek in the open sea: Pelagic camouflage and visual countermeasures. Ann. Rev. Mar. Sci. 6, 369–392 (2014).

    Article  Google Scholar 

  • 5.

    Kakiuchida, H., Sakai, D., Nishikawa, J. & Hirose, E. Measurement of refractive indices of tunicates’ tunics: Light reflection of the transparent integuments in an ascidian Rhopalaea sp. and a salp Thetys vagina. Zool. Lett. 3, 7 (2017).

    Article  Google Scholar 

  • 6.

    Sakai, D., Kakiuchida, H., Nishikawa, J. & Hirose, E. Physical properties of the tunic in the pinkish-brown salp Pegea confoederata (Tunicata: Thaliacea). Zool. Lett. 4, 1–9 (2018).

    Article  Google Scholar 

  • 7.

    Giguère, L. A. & Northcote, T. G. Ingested prey increase risks of visual predation in transparent Chaoborus larvae. Oecologia 73, 48–52 (1987).

    ADS  Article  Google Scholar 

  • 8.

    Cronin, T. W. Camouflage: Being invisible in the open ocean. Curr. Biol. 26, R1179–R1181 (2016).

    CAS  Article  Google Scholar 

  • 9.

    Hansson, L. A. Induced pigmentation in zooplankton: A trade-off between threats from predation and ultraviolet radiation. Proc. R. Soc. B Biol. Sci. 267, 2327–2331 (2000).

    CAS  Article  Google Scholar 

  • 10.

    Johnsen, S. Hidden in plain sight: The ecology and physiology of organismal transparency. Biol. Bull. 201, 301–318 (2001).

    CAS  Article  Google Scholar 

  • 11.

    Yasuo, H. & McDougall, A. Practical guide for ascidian microinjection: Phallusia mammillata. Adv. Exp. Med. Biol. 1029, 15–24 (2018).

    CAS  Article  Google Scholar 

  • 12.

    Piliszek, A., Kwon, G. S. & Hadjantonakis, A.-K. Embryological methods in ascidians: The Villefranche-sur-Mer protocols. In Methods in Molecular Biology (Clifton, N.J.) Vol. 770 (ed. Pelegri, F. J.) 243–257 (Humana Press, Totowa, 2011).

    Google Scholar 

  • 13.

    Burighel, P. & Cloney, R. A. Urochordata: Ascidiacea. Microscopic Anatomy of Invertebrates 221–347 (1997).

  • 14.

    Conklin, E. G. Mosaic development in ascidian eggs. J. Exp. Zool. 2, 145–223 (1905).

    Article  Google Scholar 

  • 15.

    Jeffery, W. R. Identification of proteins and mRNAs in isolated yellow crescents of ascidian eggs. J. Embryol. Exp. Morphol. 89, 275–287 (1985).

    CAS  PubMed  Google Scholar 

  • 16.

    Arai, M. N. Biological interactions. in A Functional Biology of Scyphozoa 203–223 (Springer Netherlands, 1997). https://doi.org/10.1007/978-94-009-1497-1_9

  • 17.

    Nishikawa, T. et al. Molecular and morphological discrimination between an invasive ascidian, Ascidiella aspersa, and its congener A. scabra (Urochordata: Ascidiacea). Zool. Sci. 31, 180–185 (2014).

    CAS  Article  Google Scholar 

  • 18.

    Passamaneck, Y. J. & Di Gregorio, A. Ciona intestinalis: Chordate development made simple. Dev. Dyn. https://doi.org/10.1002/dvdy.20300 (2005).

    Article  PubMed  Google Scholar 

  • 19.

    Dehal, P. et al. The draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins. Science 298, 2157–2167 (2002).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Tassy, O. et al. The ANISEED database: Digital representation, formalization, and elucidation of a chordate developmental program. Genome Res. 20, 1459–1468 (2010).

    CAS  Article  Google Scholar 

  • 21.

    Brozovic, M. et al. ANISEED 2017: Extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx1108 (2017).

    Article  PubMed Central  Google Scholar 

  • 22.

    Delsuc, F. F. et al. A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biol. 16, 1–14 (2018).

    Article  Google Scholar 

  • 23.

    Epel, D., Hemela, K., Shick, M. & Patton, C. Development in the floating world: Defenses of eggs and embryos against damage from UV radiation. Am. Zool. 39, 271–278 (1999).

    Article  Google Scholar 

  • 24.

    Eaton, T. H. & Cott, H. B. Adaptive coloration in animals. Am. Midl. Nat. https://doi.org/10.2307/2420875 (1940).

    Article  Google Scholar 

  • 25.

    Lindquist, N., Hay, M. E. & Fenical, W. Defense of ascidians and their conspicuous larvae: Adult vs larval chemical defenses. Ecol. Monogr. 62, 547–568 (1992).

    Article  Google Scholar 

  • 26.

    Hirose, E., Ohtake, S.-I. & Azumi, K. Morphological characterization of the tunic in the edible ascidian, Halocynthia roretzi (Drasche), with remarks on ‘soft tunic syndrome’ in aquaculture. J. Fish Dis. 32, 433–445 (2009).

    CAS  Article  Google Scholar 

  • 27.

    Jacobs, G. H. Ultraviolet vision in vertebrates. Am. Zool. 32, 544–554 (1992).

    Article  Google Scholar 

  • 28.

    Karentz, D., Bosch, I. & Mitchell, D. M. Limited effects of Antarctic ozone depletion on sea urchin development. Mar. Biol. 145, 277–292 (2004).

    CAS  Article  Google Scholar 

  • 29.

    Winckler, K. & Fidhiany, L. Combined effects of constant sublethal UVA irradiation and elevated temperature on the survival and general metabolism of the convict-cichlid fish, Cichlasoma nigrofasciatum. Photochem. Photobiol. 63, 487–491 (1996).

    CAS  Article  Google Scholar 

  • 30.

    Bingham, B. L. & Reitzel, A. M. Solar damage to the solitary ascidian, Corella inflata. J. Mar. Biol. Assoc. UK 80, 515–521 (2000).

    Article  Google Scholar 

  • 31.

    Hirose, E. Pigmentation and acid storage in the tunic: Protective functions of the tunic cells in the tropical ascidian Phallusia nigra. Invertebr. Biol. 118, 414 (1999).

    Article  Google Scholar 

  • 32.

    Hirose, E., Hirabayashi, S., Hori, K., Kasai, F. & Watanabe, M. M. UV protection in the photosymbiotic ascidian Didemnum molle inhabiting different depths. Zool. Sci. 23, 57–63 (2006).

    CAS  Article  Google Scholar 

  • 33.

    Olson, R. R. Ascidian-prochloron symbiosis: The role of larval photoadaptations in midday larval release and settlement. Biol. Bull. 165, 221–240 (1983).

    Article  Google Scholar 

  • 34.

    Sensui, N. & Hirose, E. Cytoplasmic UV-R absorption in an integumentary matrix (Tunic) of photosymbiotic ascidian colonies. Zool. Stud. 57, 1–11 (2018).

    Google Scholar 

  • 35.

    Hirose, E., Ohtsuka, K., Ishikura, M. & Maruyama, T. Ultraviolet absorption in ascidian tunic and ascidian-Prochloron symbiosis. J. Mar. Biol. Assoc. UK 84, 789–794 (2004).

    CAS  Article  Google Scholar 

  • 36.

    Hansson, L. A. & Hylander, S. Effects of ultraviolet radiation on pigmentation, photoenzymatic repair, behavior, and community ecology of zooplankton. Photochem. Photobiol. Sci. 8, 1266–1275 (2009).

    CAS  Article  Google Scholar 

  • 37.

    Hansson, L. A., Hylander, S. & Sommaruga, R. Escape from UV threats in zooplankton: A cocktail of behavior and protective pigmentation. Ecology 88, 1932–1939 (2007).

    Article  Google Scholar 

  • 38.

    Pineda, M. C., Lorente, B., López-Legentil, S., Palacín, C. & Turon, X. Stochasticity in space, persistence in time: Genetic heterogeneity in harbour populations of the introduced ascidian Styela plicata. PeerJ 4, e2158 (2016).

    Article  Google Scholar 

  • 39.

    Zaniolo, G., Burighel, P. & Martinucci, G. Ovulation and placentation in Botryllus schlosseri (Ascidiacea): An ultrastructural study. Can. J. Zool. 65, 1181–1190 (1987).

    Article  Google Scholar 

  • 40.

    Mukai, H., Saito, Y. & Watanabe, H. Viviparous development in Botrylloides (compound ascidians). J. Morphol. 193, 263–276 (1987).

    Article  Google Scholar 

  • 41.

    Burighel, P., Cloney, R. A. & Cloney, B. Microscopic anatomy of invertebrates. Microsc. Anat. Invertebr. 15, 221–347 (1997).

    Google Scholar 

  • 42.

    Sardet, C. et al. Chapter 14 Embryological methods in ascidians: The Villefranche-sur-Mer protocols. Vertebr. Embryog. Methods Mol. Biol. 770, (2011).

  • 43.

    Chatterjee, A. et al. Cephalopod-inspired optical engineering of human cells. Nat. Commun. 11, 2708 (2020).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Tsagkogeorga, G. et al. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models. BMC Evol. Biol. 9, 187 (2009).

    Article  Google Scholar 

  • 45.

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. https://doi.org/10.1071/ZO9660275 (1994).

    Article  PubMed  Google Scholar 

  • 46.

    Hasegawa, N. & Kajihara, H. A redescription of syncarpa composita (Ascidiacea, stolidobranchia) with an inference of its phylogenetic position within styelidae. Zookeys 2019, 1–15 (2019).

    CAS  Article  Google Scholar 

  • 47.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mst010 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 48.

    Castresana, J. Estimation of genetic distances from human and mouse introns. Genome Biol. https://doi.org/10.1186/gb-2002-3-6-research0028 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msw054 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. https://doi.org/10.1093/bioinformatics/btu033 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics https://doi.org/10.1093/bioinformatics/17.8.754 (2001).

    Article  PubMed  Google Scholar 

  • 52.

    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics https://doi.org/10.1093/bioinformatics/btg180 (2003).

    Article  PubMed  Google Scholar 

  • 53.

    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partitionfinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msw260 (2017).

    Article  PubMed  Google Scholar 

  • 54.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Continuous moulting by Antarctic krill drives major pulses of carbon export in the north Scotia Sea, Southern Ocean

    An escape route for seafloor methane