in

Phylogenetic diversity shapes salt tolerance in Phragmites australis estuarine populations in East China

  • 1.

    Eller, F. et al. Cosmopolitan species as models for ecophysiological responses to global change: The common reed Phragmites australis. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.01833 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 2.

    Hauber, D. P., Saltonstall, K., White, D. A. & Hood, C. S. Genetic variation in the common reed, Phragmites australis, in the Mississippi River Delta marshes: Evidence for multiple introductions. Estuar. Coast 34, 851–862 (2011).

    CAS  Article  Google Scholar 

  • 3.

    Lambertini, C. et al. Tracing the origin of Gulf Coast Phragmites (Poaceae): A story of long-distance dispersal and hybridization. Am. J. Bot. 99, 538–551 (2012).

    CAS  Article  Google Scholar 

  • 4.

    Lambertini, C.et al. Revisiting Phragmites australisvariation in the Danube Delta with DNA molecular techniques. Water Resources and Wetlands, Conference Proceeding, 142–150; https://www.limnology.ro/water2012/Proceedings/019.html (2012).

  • 5.

    Nguyen, L. X. et al. Are the photosynthetic characteristics of co-existing lineages of Phragmites australis based on adaptations acquired in their native climatic zones?. AoB Plants https://doi.org/10.1093/aobpla/plt016 (2013).

    Article  PubMed Central  Google Scholar 

  • 6.

    Eller, F., Lambertini, C., Nguyen, L. X. & Brix, H. Increased invasive potential of nonnative Phragmites australis: Elevated CO2 and temperature alleviate salinity effects on photosynthesis. Change Biol Glob https://doi.org/10.1111/gcb.12346 (2014).

    Article  Google Scholar 

  • 7.

    Guo, W.-Y. et al. Phenotypic traits of the Mediterranean Phragmites australis M1 lineage: Differences between the native and introduced ranges. Biol. Invasions 18, 2551–2561 (2016).

    Article  Google Scholar 

  • 8.

    Chambers, R. M., Meyerson, L. A. & Saltonstall, K. Expansion of Phragmites australis into tidal wetlands of North America. Aquat. Bot. 64, 261–273 (1999).

    Article  Google Scholar 

  • 9.

    Saltonstall, K. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. USA 99, 2445–2449 (2002).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Zhao, K. F., Feng, L. T. & Zhang, S. Q. Study of the salinity-adaptation physiology in different ecotypes of Phragmites australis in the Yellow River Delta of China: Osmotica and their contribution to the osmotic adjustment. Estuar. Coast Shelf 49, 37–42 (1999).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Guo, W., Wang, R., Zhou, S., Zhang, S. & Zhang, Z. Genetic diversity and clonal structure of Phragmites australis in the Yellow River delta of China. Bio. Chem. Syst. Ecol. 31, 1093–1109 (2003).

    CAS  Article  Google Scholar 

  • 12.

    Vasquez, E. A., Glenn, E. P., Brown, J. J., Guntensprenger, G. R. & Nelson, S. G. Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reed Phragmites australis (Poaceae). Mar. Ecol. Prog. Ser. 298, 1–8 (2005).

    ADS  Article  Google Scholar 

  • 13.

    Hurry, C. R., James, E. A. & Thompson, R. M. Connectivity, genetic structure and stress response of Phragmites australis: issues for restoration in a salinizing wetland system. Aquat. Bot. 104, 138–146 (2013).

    Article  Google Scholar 

  • 14.

    Holmes, G. D., Hall, N. E., Gendall, A. R., Boon, P. I. & James, E. A. Using transcriptomics to identify differential gene expression in response to salinity among Australian Phragmites australis clones. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.00432 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Achenbach, L., Eller, F., Nguyen, L. X. & Brix, H. Differences in salinity tolerance in genetically distinct Phragmites australis clones. AoB Plants 5, 19. https://doi.org/10.1093/aobpla/plt019 (2013).

    CAS  Article  Google Scholar 

  • 16.

    Gao, L. et al. Spatial genetic structure in natural populations of Phragmites australis in a mosaic of saline habitats in the Yellow River Delta China. PONE 7(8), e43334. https://doi.org/10.1371/journal.pone.0043334 (2012).

    CAS  Article  Google Scholar 

  • 17.

    Lambertini, C. et al. A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Plant. Syst. Evol. 258, 161–182 (2006).

    Article  Google Scholar 

  • 18.

    Lambertini, C., Sorrell, B. K., Riis, T., Olesen, B. & Brix, H. Exploring the borders of European Phragmites within a cosmopolitan genus. AoB Plants https://doi.org/10.1093/aobpla/pls020 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    An, J., Wang, Q., Yang, J. & Liu, Q. Phylogeographic analyses of Phagmites australis in China: Native distribution and habitat preference of the haplotype that invaded North America. J. Syst. Evol. 00, 1–7 (2012).

    Google Scholar 

  • 20.

    Chu, H. et al. Identification of natural hybrids in Korean Phragmites using haplotype and genotype analyses. Plant Syst. Evol. 293, 247–253 (2011).

    Article  Google Scholar 

  • 21.

    Tanaka, T., Chagan, I. & Tatsuya, I. Phylogenetic analyses of Phragmites spp. in southwest China identified two lineages and their hybrids. Plant Sys. Evol. 303, 699–707 (2017).

    Article  Google Scholar 

  • 22.

    Saltonstall, K. The naming of Phragmites haplotypes. Biol. Invasions 18, 2433–2441. https://doi.org/10.1007/s10530-016-1192-4 (2016).

    Article  Google Scholar 

  • 23.

    Zong, W., Chen, R., Taniguchi, K. & Kondo, K. A chromosome study in intraspecific polyploidy of Phragmites australis and its related species. La Kromosomo 63–64, 2168–2172 (1991).

    Google Scholar 

  • 24.

    Clevering, O. A. & Lissner, J. Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquat. Bot. 64, 185–208 (1999).

    Article  Google Scholar 

  • 25.

    Takahashi, R., Liu, S. & Takano, T. Cloning and functional comparison of a high affinity K+ transporter gene PhaHKT1 of salt-tolerant and salt-sensitive reed plants. J. Exp. Bot. 58, 4387–4395 (2007).

    CAS  Article  Google Scholar 

  • 26.

    Yao, P.-C. Evaluating sampling strategy for DNA barcoding study of coastal and inland halo-tolerant Poaceae and Chenopodiaceae: A case study for increased sample size. PLoS ONE 12(9), e0185311. https://doi.org/10.1371/journal.pone.0185311 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Ishii, J. & Kadono, Y. Factors influencing seed production of Phragmites australis. Aquat. Bot. 72, 129–141 (2002).

    Article  Google Scholar 

  • 28.

    Brix, H. et al. Large-scale management of common reed, Phragmites australis, for paper production: A case study from the Liaohe Delta, China. Ecol. Eng. 73, 760–769. https://doi.org/10.1016/j.ecoleng.2014.09.099 (2014).

    Article  Google Scholar 

  • 29.

    Lambertini, C., Gustafsson, M. H. G., Frydenberg, J., Speranza, M. & Brix, H. Genetic diversity patterns in Phragmites australis at the population, regional and continental scales. Aquat. Bot. 88, 160–170. https://doi.org/10.1016/j.aquabot.2007.10.002 (2008).

    CAS  Article  Google Scholar 

  • 30.

    Fér, T. & Hroudová, Z. Genetic diversity and dispersal of Phragmites australis in a small river system. Aquat. Bot. 90, 165–171 (2009).

    Article  Google Scholar 

  • 31.

    Krzakowa, M. & Michalak, M. Genetic differentiation of common reed (Phragmites australis) populations from selected lakes of Pomerania (NW Poland), revealed by elecrophoretically detected peroxidase variability. Biodivers. Resour. Conserv. 17, 19–22 (2010).

    Article  Google Scholar 

  • 32.

    McCormick, M., Kettenring, K. M., Baron, H. M. & Whigham, D. Spread of invasive Phragmites australis in estuaries with differing degrees of development: genetic patterns Allee effects and interpretation. J. Ecol. 98, 1369–1378 (2010).

    Article  Google Scholar 

  • 33.

    Canavan, K., Paterson, I. D., Lambertini, C. & Hill, M. P. Expansive reed populations—alien invasion or disturbed wetlands?. AoB PLANTS https://doi.org/10.1093/aobpla/ply014 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Li, M. et al. Clonal genetic diversity and populational genetic differentiation in Phragmites australis distributed in the Songnen Prairie in northeast China as revealed by amplified length polymorphism and sequence-specific amplification polymorphism molecular markers. Ann. Appl. Biol. 154, 43–55 (2008).

    Article  Google Scholar 

  • 35.

    Qiu, T., Jiang, L. L. & Yang, Y. F. Genetic and epigenetic diversity and structure of Phragmites australis from local habitats of the Songnen Prairie using amplified fragment length polymorphism markers. Genet. Mol. Res. https://doi.org/10.4238/gmr.15038585 (2016).

    Article  PubMed  Google Scholar 

  • 36.

    Lin, W. F., Chen, L. J. & Zhu, X. Y. An analysis of genetic diversity of different ecotypes of reed (Phragmites communis Trin) by molecular marker techniques. J. Plant. Physiol. Mol. Biol. 33, 77–84 (2007).

    CAS  Google Scholar 

  • 37.

    Rus, A. et al. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc. Natl. Acad. Sci. USA 98, 14150–14155. https://doi.org/10.1073/pnas.241501798 (2001).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 38.

    Baxter, I. et al. A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1. PLoS Genet. 6(11), e1001193. https://doi.org/10.1371/journal.pgen.1001193 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Thuong, V. T. et al. Examining spatiotemporal salinity dynamics in the Mekong River Delta using Landsat time series imagery and a spatial regression approach. Sci. Tot. Environ. 687, 1087–1097 (2019).

    Article  Google Scholar 

  • 40.

    Hall, T. A. Bioedit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).

    CAS  Google Scholar 

  • 41.

    Lambertini, C. Heteroplasmy: Another complexity of the Phragmites genome to take into account. Biol. Invasions 18, 2443–2455. https://doi.org/10.1007/s10530-016-1193-3 (2016).

    Article  Google Scholar 

  • 42.

    Swofford, D.L. PAUP. Phylogenetic Analysis Using Parsimony (and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts (2002).

  • 43.

    Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D. & Kluge, A. G. Parsimony jackknifing outperforms neighbor-joining. Cladistics 12, 99–124. https://doi.org/10.1111/j.1096-0031.1996.tb00196.x (1996).

    Article  Google Scholar 

  • 44.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).

    CAS  Article  Google Scholar 

  • 45.

    Peakall, R. & Smouse, P. E. GenAlex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).

    Google Scholar 

  • 46.

    Saltonstall, K. Microsatellite variation within and among North American lineages of Phragmites australis. Mol. Ecol. 12, 1689–1702 (2003).

    CAS  Article  Google Scholar 

  • 47.

    Pritchard, K. J., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Earl, D. A. & von Holdt, B. M. Structure Harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).

    Article  Google Scholar 

  • 49.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS  Article  Google Scholar 

  • 50.

    Fischer, G. et al. Global agro-ecological zones assessment for agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy (2008)

  • 51.

    Lv, Z. Z. et al. Spatial variability of soil salinity in Bohai Sea coastal wetlands, China: Partition into four management zones. Plant Biosyst. 147, 1201–1210 (2013).

    Article  Google Scholar 

  • 52.

    Fan, X., Liu, Y., Tao, J. & Weng, Y. Soil salinity retrieval from advanced multi-spectral sensor with Partial Least Square Regression. Remote Sens. 7, 488–511 (2015).

    ADS  Article  Google Scholar 

  • 53.

    Yang, L., Huang, C., Liu, G., Liu, J. & Zhu, A. X. Mapping soil salinity using a similarity-based prediction approach: A case study in Huanghe River Delta China. Chin. Geogr. Sci. 25, 283–294. https://doi.org/10.1007/s11769-015-0740-7 (2015).

    Article  Google Scholar 

  • 54.

    Jiang, J. Y. et al. Soil organic carbon storage in tidal wetland and its relationships with soil physico-chemical factors: A case study of Dongtan of Chongming, Shanghai. J. Ecol. Rural Environ. 31, 540–547 (2015).

    Google Scholar 


  • Source: Ecology - nature.com

    A controllable membrane to pull carbon dioxide out of exhaust streams

    More than a meal