in

Phytoliths in selected broad-leaved trees in China

  • 1.

    Pearsall, D. M. et al. Distinguishing rice (Oryza Sativa Poaceae) from wild Oryza species through phytolith analysis—results of preliminary research. Econ. Bot. 49, 183–196. https://doi.org/10.1007/Bf02862923 (1995).

    Article  Google Scholar 

  • 2.

    Ball, T. et al. Phytoliths as a tool for investigations of agricultural origins and dispersals around the world. J. Archaeol. Sci. 68, 32–65 (2016).

    Article  Google Scholar 

  • 3.

    Lu, H. et al. Culinary archaeology: millet noodles in Late Neolithic China. Nature 437, 967–968. https://doi.org/10.1038/437967a (2005).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 4.

    Wang, Y. J. & Lu, H. Y. The Study of Phytolith and Its Application (China Ocean Press, Beijing, 1993).

    Google Scholar 

  • 5.

    Piperno, D. R. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists (AltaMira Press, Lanham, 2006).

    Google Scholar 

  • 6.

    Pearsall, D. M. Paleoethnobotany: A Handbook of Procedures (Academic Press, London, 1989).

    Google Scholar 

  • 7.

    Piperno, D. R. Phytolyth Analysis: An Archaeological and Geological Perspective (Academic Press, London, 1988).

    Google Scholar 

  • 8.

    Prebble, M., Schallenberg, M., Carter, J. & Shulmeister, J. An analysis of phytolith assemblages for the quantitative reconstruction of late Quaternary environments of the Lower Taieri Plain, otago, South Island, New Zealand I. Modern assemblages and transfer functions. J. Paleolimnol. 27, 393–413. https://doi.org/10.1023/A:1020318803497 (2002).

    ADS  Article  Google Scholar 

  • 9.

    Lu, H. Y. et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China I: phytolith-based transfer functions. Quatern. Sci. Rev. 25, 945–959. https://doi.org/10.1016/j.quascirev.2005.07.014 (2006).

    ADS  Article  Google Scholar 

  • 10.

    Bremond, L. et al. Phytolith indices as proxies of grass subfamilies on East African tropical mountains. Global Planet Change 61, 209–224. https://doi.org/10.1016/j.gloplacha.2007.08.016 (2008).

    ADS  Article  Google Scholar 

  • 11.

    Iriarte, J. & Paz, E. A. Phytolith analysis of selected native plants and modern soils from southeastern Uruguay and its implications for paleoenvironmental and archeological reconstruction. Quatern. Int. 193, 99–123. https://doi.org/10.1016/j.quaint.2007.10.008 (2009).

    Article  Google Scholar 

  • 12.

    Mercader, J., Bennett, T., Esselmont, C., Simpson, S. & Walde, D. Phytoliths in woody plants from the Miombo woodlands of Mozambique. Ann. Bot. 104, 91–113. https://doi.org/10.1093/aob/mcp097 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Mercader, J. et al. Poaceae phytoliths from the Niassa Rift, Mozambique. J. Archaeol. Sci. 37, 1953–1967. https://doi.org/10.1016/j.jas.2010.03.001 (2010).

    Article  Google Scholar 

  • 14.

    Patterer, N. I., Passeggi, E. & Zucol, A. F. Phytolith analysis of soils from the southwestern Entre Rios Province (Argentina) as a tool to understand their pedological processes. Rev. Mex. Cienc. Geol. 28, 132–146 (2011).

    Google Scholar 

  • 15.

    Pearce, M. & Ball, T. A study of phytoliths produced by selected native plant taxa commonly used by Great Basin Native Americans. Veg. Hist. Archaeobot. https://doi.org/10.1007/s00334-019-00738-1 (2019).

    Article  Google Scholar 

  • 16.

    Carter, J. A. Phytoliths from loess in Southland, New Zealand. N. Z. J. Bot. 38, 325–332 (2000).

    Article  Google Scholar 

  • 17.

    Ball, T. B., Ehlers, R. & Standing, M. D. Review of typologic and morphometric analysis of phytoliths produced by wheat and barley. Breed. Sci. 59, 505–512. https://doi.org/10.1270/jsbbs.59.505 (2009).

    Article  Google Scholar 

  • 18.

    18Lu, H., Wu, N. & Liu, K. In The state of the art of phytoliths in plants and soils (eds A. Pinilla, J. Juan-Tresseras, & J. Machado) Ch. 159, 15 (Monogra as del Centro de Ciencias Medambioentales, 1997).

  • 19.

    Lu, H. et al. Phytoliths analysis for the discrimination of Foxtail millet (Setaria italica) and common millet (Panicum miliaceum). PLoS ONE 4, e4448. https://doi.org/10.1371/journal.pone.0004448 (2009).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 20.

    Ge, Y. et al. Phytolith analysis for the identification of barnyard millet (Echinochloa sp.) and its implications. Archaeol. Anthrop. Sci. 10, 61–73. https://doi.org/10.1007/s12520-016-0341-0 (2018).

    Article  Google Scholar 

  • 21.

    Piperno, D. R. A comparison and differentiation of phytoliths from maize and wild grasses: use of morphological criteria. Am. Antiq. 49, 361–383. https://doi.org/10.2307/280024 (1984).

    Article  Google Scholar 

  • 22.

    Ge, Y., Lu, H., Zhang, J., Wang, C. & Gao, X. Phytoliths in inflorescence bracts: preliminary results of an investigation on common Panicoideae plants in China. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01736 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Huan, X. et al. Bulliform phytolith research in wild and domesticated rice paddy soil in South China. PLoS ONE 10, e0141255 (2015).

    Article  Google Scholar 

  • 24.

    Prebble, M. & Shulmeister, J. An analysis of phytolith assemblages for the quantitative reconstruction of late Quaternary environments of the Lower Taieri Plain, Otago, South Island, New Zealand II. Paleoenvironmental reconstruction. J. Paleolimnol. 27, 415–427. https://doi.org/10.1023/a:1020314719427 (2002).

    ADS  Article  Google Scholar 

  • 25.

    Lu, H. Y., Wu, N. Q., Liu, K. B., Jiang, H. & Liu, T. S. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: palaeoenvironmental reconstruction in the Loess Plateau. Quatern. Sci. Rev. 26, 759–772. https://doi.org/10.1016/j.quascirev.2006.10.006 (2007).

    ADS  Article  Google Scholar 

  • 26.

    Carter, J. A. & Lian, O. B. Palaeoenvironmental reconstruction from last interglacial using phytolith analysis, southeastern North Island New Zealand. J. Quatern. Sci. 15, 733–743. https://doi.org/10.1002/1099-1417(200010)15:7%3c733::Aid-Jqs532%3e3.0.Co;2-J (2000).

    ADS  Article  Google Scholar 

  • 27.

    Novello, A. et al. Phytoliths indicate significant arboreal cover at Sahelanthropus type locality TM266 in northern Chad and a decrease in later sites. J. Hum. Evol. 106, 66–83. https://doi.org/10.1016/j.jhevol.2017.01.009 (2017).

    Article  PubMed  Google Scholar 

  • 28.

    He, K. et al. Middle-Holocene sea-level fluctuations interrupted the developing Hemudu culture in the lower Yangtze River, China. Quatern. Sci. Rev. 188, 90–103. https://doi.org/10.1016/j.quascirev.2018.03.034 (2018).

    ADS  Article  Google Scholar 

  • 29.

    Deng, Z. et al. The first discovery of Neolithic rice remains in eastern Taiwan: phytolith evidence from the Chaolaiqiao site. Archaeol. Anthrop. Sci. 10, 1477–1484. https://doi.org/10.1007/s12520-017-0471-z (2018).

    Article  Google Scholar 

  • 30.

    Piperno, D. R. The origins of plant cultivation and domestication in the New World tropics. Curr. Anthropol. 52, S453–S470 (2011).

    Article  Google Scholar 

  • 31.

    Yang, X. et al. Barnyard grasses were processed with rice around 10000 years ago. Sci. Rep. Uk 5, 16251. https://doi.org/10.1038/srep16251 (2015).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Lu, H. et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc. Natl. Acad. Sci. U.S.A. 106, 7367–7372. https://doi.org/10.1073/pnas.0900158106 (2009).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Stromberg, C. Phytoliths in Paleoecology (Springer, Berlin, 2018).

    Google Scholar 

  • 34.

    Stromberg, C. A. E., Dunn, R. E., Madden, R. H., Kohn, M. J. & Carlini, A. A. Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nat. Commun. 4, 1–8. https://doi.org/10.1038/Ncomms2508 (2013).

    Article  Google Scholar 

  • 35.

    Nurse, A. M., Reavie, E. D., Ladwig, J. L. & Yost, C. L. Pollen and phytolith paleoecology in the St. Louis River Estuary, Minnesota, USA, with special consideration of Zizania palustris L. Rev. Palaeobot. Palyno 246, 216–231. https://doi.org/10.1016/j.revpalbo.2017.07.003 (2017).

    Article  Google Scholar 

  • 36.

    Liu, H., Gu, Y., Lun, Z., Qin, Y. & Cheng, S. Phytolith-inferred transfer function for paleohydrological reconstruction of Dajiuhu peatland, central China. Holocene 28, 1623–1630. https://doi.org/10.1177/0959683618782590 (2018).

    ADS  Article  Google Scholar 

  • 37.

    Li, D. et al. Holocene climate reconstruction based on herbaceous phytolith indices from an AMS 14 C-dated peat profile in the Changbai Mountains, northeast China. Quatern. Int. 447, 144–157 (2017).

    Article  Google Scholar 

  • 38.

    Zuo, X. et al. Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene. Proc. Natl. Acad. Sci. 114, 6486–6491. https://doi.org/10.1073/pnas.1704304114 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 39.

    Luo, W. et al. Evidence for crop structure from phytoliths at the Dongzhao site on the Central Plains of China from Xinzhai to Erligang periods. J. Archaeol. Sci. Rep. 17, 852–859. https://doi.org/10.1016/j.jasrep.2017.12.018 (2018).

    Article  Google Scholar 

  • 40.

    Deng, Z., Hung, H.-C., Fan, X., Huang, Y. & Lu, H. The ancient dispersal of millets in southern China: New archaeological evidence. Holocene 28, 34–43 (2017).

    ADS  Article  Google Scholar 

  • 41.

    Piperno, D. R., Holst, I., Moreno, J. E. & Winter, K. Experimenting with domestication: understanding macro- and micro-phenotypes and developmental plasticity in teosinte in its ancestral pleistocene and early holocene environments. J. Archaeol. Sci. 108, 104970. https://doi.org/10.1016/j.jas.2019.05.006 (2019).

    Article  Google Scholar 

  • 42.

    Piperno, D. R., Ranere, A. J., Holst, I., Iriarte, J. & Dickau, R. Starch grain and phytolith evidence for early ninth millennium BP maize from the Central Balsas River Valley, Mexico. Proc. Natl. Acad. Sci. U.S.A. 106, 5019–5024. https://doi.org/10.1073/pnas.0812525106 (2009).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Wang, J. et al. Revealing a 5,000-y-old beer recipe in China. Proc. Natl. Acad. Sci. 113, 6444–6448. https://doi.org/10.1073/pnas.1601465113 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 44.

    Hilbert, L. et al. Evidence for mid-Holocene rice domestication in the Americas. Nat. Ecol. Evol. 1, 1693–1698. https://doi.org/10.1038/s41559-017-0322-4 (2017).

    Article  PubMed  Google Scholar 

  • 45.

    Kondo, R., Childs, C. & Atkinson, I. Opal Phytoliths of New Zealand Vol. 85 (Manaaki Whenua Press, Lincoln, 1994).

    Google Scholar 

  • 46.

    Geis, J. W. Biogenic silica in selected species of deciduous angiosperms. Soil Sci. 116, 113. https://doi.org/10.1097/00010694-197308000-00008 (1973).

    ADS  Article  Google Scholar 

  • 47.

    Kondo, R. & Peason, T. Opal phytoliths in tree leaves: 2. Opal phytoliths in dicotyledonous angiosperm tree leaves (in Japanese). Res. Bull. Obihiro Univ. Ser. I(12), 217–229 (1981).

    Google Scholar 

  • 48.

    Kealhofer, L. & Piperno, D. R. Opal phytoliths in Southeast Asian Flora (Smithsonian Institution Press, Washington, 1998).

    Google Scholar 

  • 49.

    Morris, L. R., Baker, F. A., Morris, C. & Ryel, R. J. Phytolith types and type-frequencies in native and introduced species of the sagebrush steppe and pinyon-juniper woodlands of the Great Basin, USA. Rev. Palaeobot. Palyno 157, 339–357. https://doi.org/10.1016/j.revpalbo.2009.06.007 (2009).

    Article  Google Scholar 

  • 50.

    Lisztes-Szabó, Z., Braun, M., Csík, A. & Pető, Á. Phytoliths of six woody species important in the Carpathians: characteristic phytoliths in Norway spruce needles. Veg. Hist. Archaeobot. https://doi.org/10.1007/s00334-019-00720-x (2019).

    Article  Google Scholar 

  • 51.

    Carnelli, A. L., Theurillat, J. P. & Madella, A. Phytolith types and type-frequencies in subalpine-alpine plant species of the European Alps. Rev. Palaeobot. Palyno 129, 39–65. https://doi.org/10.1016/j.revpalbo.2003.11.002 (2004).

    Article  Google Scholar 

  • 52.

    Runge, F. The opal phytolith inventory of soils in central Africa—quantities, shapes, classification, and spectra. Rev. Palaeobot. Palyno 107, 23–53. https://doi.org/10.1016/S0034-6667(99)00018-4 (1999).

    Article  Google Scholar 

  • 53.

    Mercader, J., Bennett, T., Esselmont, C., Simpson, S. & Walde, D. Soil phytoliths from miombo woodlands in Mozambique. Quatern. Res. 75, 138–150. https://doi.org/10.1016/j.yqres.2010.09.008 (2011).

    ADS  Article  Google Scholar 

  • 54.

    Kondo, R. Phytoliths Images by Scanning Electron Microscope—An Introduction to Phytoliths (in Japanese) (Hokkaido University Press, Hokkaido, 2010).

    Google Scholar 

  • 55.

    Ge, Y., Jie, D. M., Sun, Y. L. & Liu, H. M. Phytoliths in woody plants from the northern slope of the Changbai Mountain (Northeast China), and their implication. Plant Syst. Evol. 292, 55–62. https://doi.org/10.1007/s00606-010-0406-y (2011).

    CAS  Article  Google Scholar 

  • 56.

    Gao, G. et al. Phytolith characteristics and preservation in trees from coniferous and broad-leaved mixed forest in an eastern mountainous area of Northeast China. Rev. Palaeobot. Palyno 255, 43–56 (2018).

    Article  Google Scholar 

  • 57.

    Bremond, L., Alexandre, A., Hely, C. & Guiot, J. A phytolith index as a proxy of tree cover density in tropical areas: calibration with Leaf Area Index along a forest-savanna transect in southeastern Cameroon. Global Planet Change 45, 277–293. https://doi.org/10.1016/j.gloplacha.2004.09.002 (2005).

    ADS  Article  Google Scholar 

  • 58.

    Esteban, I. et al. Phytoliths in plants from the south coast of the Greater Cape Floristic Region (South Africa). Rev. Palaeobot. Palyno https://doi.org/10.1016/j.revpalbo.2017.05.001 (2017).

    Article  Google Scholar 

  • 59.

    Scurfield, G., Anderson, C. A. & Segnit, E. R. Silica in woody stems. Aust. J. Bot. 22, 211–229. https://doi.org/10.1071/Bt9740211 (1974).

    CAS  Article  Google Scholar 

  • 60.

    Collura, L. V. & Neumann, K. Wood and bark phytoliths of West African woody plants. Quatern. Int. https://doi.org/10.1016/j.quaint.2015.12.070 (2016).

    Article  Google Scholar 

  • 61.

    Lu, H. Y. & Liu, K. B. Phytoliths of common grasses in the coastal environments of southeastern USA. Estuar. Coast Shelf Sci. 58, 587–600. https://doi.org/10.1016/S0272-7714(03)00137-9 (2003).

    ADS  Article  Google Scholar 

  • 62.

    Neumann, K. et al. International Code for Phytolith Nomenclature (ICPN) 2.0. Ann. Bot. Lond. 124, 189–199. https://doi.org/10.1093/aob/mcz064 (2019).

    Article  Google Scholar 

  • 63.

    Juggins, S. C2 Version 1.5 User Guide. Software for Ecological and Palaeoecological Data Analysis and Visualisation (Newcastle University, Newcastle, 2007).

    Google Scholar 

  • 64.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).

    Google Scholar 

  • 65.

    Biswas, O., Mukherjee, B., Mukherjee, M. & Bera, S. Phytolith spectra in some selected fern-allies of eastern Himalaya. J. Bot. Soc. Bengal 1, 35–39 (2015).

    Google Scholar 

  • 66.

    Piperno, D. R., Holst, I., Wessel-Beaver, L. & Andres, T. C. Evidence for the control of phytolith formation in Cucurbita fruits by the hard rind (Hr) genetic locus: archaeological and ecological implications. Proc. Natl. Acad. Sci. U.S.A. 99, 10923–10928. https://doi.org/10.1073/pnas.152275499 (2002).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    China’s researchers have valuable experiences that the world needs to hear about

    Conventional analysis methods underestimate the plant-available pools of calcium, magnesium and potassium in forest soils