in

Phytoplankton alpha diversity indices response the trophic state variation in hydrologically connected aquatic habitats in the Harbin Section of the Songhua River

  • 1.

    Gang, H. X. et al. Loss of GLK1 transcription factor function reveals new insights in chlorophyll biosynthesis and chloroplast development. J. Exp. Bot. 70, 3125–3138 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Yuan, Y. X. et al. Environmental variables influencing phytoplankton communities in hydrologically connected aquatic habitats in the Lake Xingkai basin. Ecol. Ind. 91, 1–12 (2018).

    CAS  Article  Google Scholar 

  • 3.

    Mousing, E. A., Richardson, K., Bendtsen, J., Cetinic, I. & Perry, M. J. Evidence of small-scale spatial structuring of phytoplankton alpha- and beta-diversity in the open ocean. J. Ecol. 104, 1682–1695 (2016).

    Article  Google Scholar 

  • 4.

    de Souza, D. G. et al. Phytoplankton functional groups in a subtropical Brazilian reservoir: responses to impoundment. Hydrobiologia 779, 47–57 (2016).

    Article  CAS  Google Scholar 

  • 5.

    Bergstrom, A. K., Jonsson, A., Isles, P. D. F., Creed, I. F. & Lau, D. C. P. Changes in nutritional quality and nutrient limitation regimes of phytoplankton in response to declining N deposition in mountain lakes. Aquat. Sci. 82, 31 (2020).

    Article  CAS  Google Scholar 

  • 6.

    Taipale, S. J., Vuorio, K., Aalto, S. L., Peltomaa, E. & Tiirola, M. Eutrophication reduces the nutritional value of phytoplankton in boreal lakes. Environ. Res. 179, 108836 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Sarkar, D., Lahiri, S., Ghosh, D. & Jana, B. B. Ecological processes-driven distribution of net-algal diversity and carbon sequestration potential across the sewage effluent gradient of stabilization pond system. Ecohydrol. Hydrobiol. 19, 464–472 (2019).

    Article  Google Scholar 

  • 8.

    Tian, W., Zhang, H. Y., Zhao, L., Zhang, F. F. & Huang, H. Phytoplankton diversity effects on community biomass and stability along nutrient gradients in a eutrophic lake. Int. J. Environ. Res. Public Health 14, 15 (2017).

    Google Scholar 

  • 9.

    Oliveira, C. Y. B., Oliveira, C. D. L., Almeida, A. J. G., Galvez, A. O. & Dantas, D. M. Phytoplankton responses to an extreme drought season: A case study at two reservoirs from a semiarid region, Northeastern Brazil. J. Limnol. 78, 176–184 (2019).

    Article  Google Scholar 

  • 10.

    Zorzal-Almeida, S., Soininen, J., Bini, L. M. & Bicudo, D. C. Local environment and connectivity are the main drivers of diatom species composition and trait variation in a set of tropical reservoirs. Freshw. Biol. 62, 1551–1563 (2017).

    Article  Google Scholar 

  • 11.

    Kelly, L. A. & Hassall, C. The spatial ecology of phytoplankton blooms in UK canals. Inland Waters 8, 422–433 (2018).

    Article  Google Scholar 

  • 12.

    Katsiapi, M. et al. Ecological connectivity in two ancient lakes: impact upon planktonic cyanobacteria and water quality. Water 12, 18 (2020).

    CAS  Article  Google Scholar 

  • 13.

    Sun, L., Wang, H., Kan, Y. Q. & Wang, S. L. Distribution of phytoplankton community and its influence factors in an urban river network, East China. Frontiers Environ. Sci. Eng. 12, 1–12 (2018).

    Google Scholar 

  • 14.

    Sabater-Liesa, L., Ginebreda, A. & Barcelo, D. Shifts of environmental and phytoplankton variables in a regulated river: a spatial-driven analysis. Sci. Total Environ. 642, 968–978 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 15.

    Binyu, L., Yujie, F., Peng, G. & Zhaohan, Z. Occurrence and distribution of polycyclic musks in surface water from the Songhua River. Adv. Mater. Res. (Switzerland) 726–731, 1508–1511 (2013).

    Google Scholar 

  • 16.

    Li, X. Y., Yu, H. X. & Ma, C. X. Zooplankton community structure in relation to environmental factors and ecological assessment of water quality in the Harbin Section of the Songhua River. Chin. J. Oceanol. Limnol. 32, 1344–1351 (2014).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Wei, H., Zhang, J. & Wang, F. C Dynamic change characteristics of ecosystem fluxes in cold zone wetlands in northeast china. Appl. Ecol. Environ. Res. 17, 10475–10490 (2019).

    Google Scholar 

  • 18.

    NEPAC. Standard Methods for the Examination of Water and Wastewater (Chinese Environmental Science Press, Beijing, 2002) (in Chinese).

    Google Scholar 

  • 19.

    Hu, H. & Wei, Y. The freshwater algae of China: systematics, taxonomy and ecology (Science Press, Beijing, 2006).

    Google Scholar 

  • 20.

    Wang, M. Evaluate method and classification standard on lake eutrophication. Environ. Monit, China 18, 47–49 (2002).

    ADS  Google Scholar 

  • 21.

    Yang, B. et al. The tempo-spatial variations of phytoplankton diversities and their correlation with trophic state levels in a large eutrophic Chinese lake. Ecol. Ind. 66, 153–162 (2016).

    Article  Google Scholar 

  • 22.

    Gu, Y. G. & Gao, Y. P. An unconstrained ordination- and GIS-based approach for identifying anthropogenic sources of heavy metal pollution in marine sediments. Mar. Pollut. Bull. 146, 100–105 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Fu, X., Shen, Y., Dong, R. C., Deng, H. B. & Wu, G. Analysis of urbanization based on center-of-gravity movement and characteristics in Songhua River basin of China and its southern source sub-basin between 1990 and 2010. Chin. Geogra. Sci. 26, 117–128 (2016).

    Article  Google Scholar 

  • 24.

    Knowlton, M. F. & Jones, J. R. Connectivity influences temporal variation of limnological conditions in Missouri River scour lakes. Lake Reserv. Manag. 19, 160–170 (2003).

    CAS  Article  Google Scholar 

  • 25.

    Raffoul, M. H., Enanga, E. M., Senar, O. E., Creed, I. F. & Trick, C. G. Assessing the potential health risk of cyanobacteria and cyanotoxins in Lake Naivasha, Kenya. Hydrobiologia 847, 1041–1056 (2020).

    CAS  Article  Google Scholar 

  • 26.

    Ochs, C. A. & Shields, F. D. Fluxes of nutrients and primary production between the main channel and floodplain backwaters of the Lower Mississippi River-Development of a simulation model. River Res. Appl. 35, 979–988 (2019).

    Article  Google Scholar 

  • 27.

    Jiang, Z. B. et al. Spatial heterogeneity of phytoplankton community shaped by a combination of anthropogenic and natural forcings in a long narrow bay in the East China Sea. Estuar. Coast. Shelf Sci. 217, 250–261 (2019).

    ADS  Article  Google Scholar 

  • 28.

    Zhang, J., Shu, X., Zhang, Y. Y., Tan, X. & Zhang, Q. F. The responses of epilithic algal community structure and function to light and nutrients and their linkages in subtropical rivers. Hydrobiologia 847, 841–855 (2020).

    CAS  Article  Google Scholar 

  • 29.

    Zuecco, G., Rinderer, M., Penna, D., Borga, M. & van Meerveld, H. J. Quantification of subsurface hydrologic connectivity in four headwater catchments using graph theory. Sci. Total Environ. 646, 1265–1280 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Yang, J. & Chu, X. F. Quantification of the spatio-temporal variations in hydrologic connectivity of small-scale topographic surfaces under various rainfall conditions. J. Hydrol. 505, 65–77 (2013).

    ADS  Article  Google Scholar 

  • 31.

    Hu, J., Chi, S. Y. & Hu, J. X. An attempt to measure longitudinal connectivity based on the community structure of phytoplankton. Environ. Monit. Assess. 191, 382 (2019).

    PubMed  Article  CAS  Google Scholar 

  • 32.

    Dijkstra, Y. M., Chant, R. J. & Reinfelder, J. R. Factors controlling seasonal phytoplankton dynamics in the Delaware River Estuary: an idealized model study. Estuaries Coasts 42, 1839–1857 (2019).

    CAS  Article  Google Scholar 

  • 33.

    Riato, L. & Leira, M. Heterogeneity of epiphytic diatoms in shallow lakes: Implications for lake monitoring. Ecol. Indic. 111, 105988 (2020).

    CAS  Article  Google Scholar 

  • 34.

    Rigual-Hernandez, A. S., Pilskaln, C. H., Cortina, A., Abrantes, F. & Armand, L. K. Diatom species fluxes in the seasonally ice-covered Antarctic Zone: new data from offshore Prydz Bay and comparison with other regions from the eastern Antarctic and western Pacific sectors of the Southern Ocean. Deep-Sea Res. Part II Top. Stud. Oceanogr. 161, 92–104 (2019).

    ADS  Article  Google Scholar 

  • 35.

    Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).

    Article  Google Scholar 

  • 36.

    Waite, I. R., Pan, Y. D. & Edwards, P. M. Assessment of multi-stressors on compositional turnover of diatom, invertebrate and fish assemblages along an urban gradient in Pacific Northwest streams (USA). Ecol. Indic. 112, 106047 (2020).

    CAS  Article  Google Scholar 

  • 37.

    Padisak, J., Crossetti, L. O. & Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621, 1–19 (2009).

    Article  Google Scholar 

  • 38.

    Knowlton, M. F. & Jones, J. R. Trophic status of Missouri River floodplain lakes in relation to basin type and connectivity. Wetlands 17, 468–475 (1997).

    Article  Google Scholar 

  • 39.

    Marquardt, G. C., Padial, A. A. & Bicudo, C. E. D. Variance partitioning of deconstructed tropical diatom communities in reservoirs cascade. Aquat. Sci. 80, 17 (2018).

    Article  Google Scholar 

  • 40.

    Moresco, G. A. et al. Drivers of phytoplankton richness and diversity components in Neotropical floodplain lakes, from small to large spatial scales. Hydrobiologia 799, 203–215 (2017).

    Article  Google Scholar 

  • 41.

    Stefanidou, N. et al. Patterns in alpha and beta phytoplankton diversity along a conductivity gradient in Coastal Mediterranean Lagoons. Diversity Basel 12, 38 (2020).

    Article  Google Scholar 

  • 42.

    Arab, S., Hamil, S., Rezzaz, M. A., Chaffai, A. & Arab, A. Seasonal variation of water quality and phytoplankton dynamics and diversity in the surface water of Boukourdane Lake, Algeria. Arab. J. Geosci. 12, 11 (2019).

    Article  CAS  Google Scholar 

  • 43.

    Naselli-Flores, L., Termine, R. & Barone, R. Phytoplankton colonization patterns. Is species richness depending on distance among freshwaters and on their connectivity?. Hydrobiologia 764, 103–113 (2016).

    CAS  Article  Google Scholar 

  • 44.

    Townsend, S. A. & Douglas, M. M. Discharge-driven flood and seasonal patterns of phytoplankton biomass and composition of an Australian tropical savannah river. Hydrobiologia 794, 203–221 (2017).

    Article  CAS  Google Scholar 

  • 45.

    Chen, X. et al. Variations in diatom communities at genus and species levels in peatlands (central China) linked to microhabitats and environmental factors. Sci. Total Environ. 568, 137–146 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Primpas, I., Tsirtsis, G., Karydis, M. & Kokkoris, G. D. Principal component analysis: development of a multivariate index for assessing eutrophication according to the European water framework directive. Ecol. Ind. 10, 178–183 (2010).

    CAS  Article  Google Scholar 

  • 47.

    Nabout, J. C., Nogueira, I. D. S., de Oliveira, L. G. & Morais, R. R. Phytoplankton diversity (alpha, beta, and gamma) from the Araguaia River tropical floodplain lakes (central Brazil). Hydrobiologia 575, 455–461 (2007).

    Article  Google Scholar 

  • 48.

    Zhang, N. N. & Zang, S. Y. Characteristics of phytoplankton distribution for assessment of water quality in the Zhalong Wetland, China. Int. J. Environ. Sci. Technol. 12, 3657–3664 (2015).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Mismatch of thermal optima between performance measures, life stages and species of spiny lobster

    Field geology at a distance