in

Plant functional traits are correlated with species persistence in the herb layer of old-growth beech forests

  • 1.

    Watt, A. S. Pattern and process in plant community. J. Ecol. 35, 1–22 (1947).

    Article  Google Scholar 

  • 2.

    Ozinga, W. et al. Local above-ground persistence of vascular plants: Life-history trade-offs and environmental constraints. J. Veg. Sci. 18, 489–497 (2007).

    Article  Google Scholar 

  • 3.

    Økland, R. H. & Eilertsen, O. Dynamics of understory vegetation in an old-growth boreal coniferous forest, 1988–1993. J. Veg. Sci. 7, 747–762 (1996).

    Article  Google Scholar 

  • 4.

    Nygaard, P. H. & Ødegaard, T. Sixty years of vegetation dynamics in a south boreal coniferous forest in southern Norway. J. Veg. Sci. 10, 5–16 (1999).

    Article  Google Scholar 

  • 5.

    Palmer, M. W. & Rusch, G. M. How fast is the carousel? Direct indices of species mobility with examples from an Oklahoma grassland. J. Veg. Sci. 12, 305–318 (2001).

    Article  Google Scholar 

  • 6.

    Zobel, M., Moora, M. & Herben, T. Clonal mobility and its implications for spatio-temporal patterns of plant communities: What do we need to know next?. Oikos 119, 802–806 (2010).

    Article  Google Scholar 

  • 7.

    Chaideftou, E., Kallimanis, A. S., Bergmeier, E. & Dimopoulos, P. How does plant species composition change from year to year? A case study from the herbaceous layer of a submediterranean oak woodland. Comm. Ecol. 13, 88–96 (2012).

    Article  Google Scholar 

  • 8.

    Chapman, J. I. & McEwan, R. W. Spatiotemporal dynamics of α-and β-diversity across topographic gradients in the herbaceous layer of an old-growth deciduous forest. Oikos 122, 1679–1686 (2013).

    Article  Google Scholar 

  • 9.

    Graae, B. J. & Sunde, P. B. The impact of forest continuity and management on forest floor vegetation evaluated by species traits. Ecography 23, 720–730 (2000).

    Article  Google Scholar 

  • 10.

    Bakker, J. P., Olff, H., Willems, J. H. & Zobel, M. Why do we need permanent plots in the study of long-term vegetation dynamics?. J. Veg. Sci. 7, 147–156 (1996).

    Article  Google Scholar 

  • 11.

    Van der Maarel, E. Pattern and process in the plant community: fifty years after A.S. Watt. J. Veg. Sci. 7, 19–28 (1996).

    Article  Google Scholar 

  • 12.

    Herben, T., Krahulec, F., Hadincová, V. & Skálová, H. Small-scale variability as a mechanism for large-scale stability in mountain grasslands. J. Veg. Sci. 4, 163–170 (1993).

    Article  Google Scholar 

  • 13.

    Økland, R. H. Persistence of vascular plants in a Norwegian boreal coniferous forest. Ecography 18, 3–14 (1995).

    Article  Google Scholar 

  • 14.

    Campetella, G. et al. Patterns of plant trait-environment relationship along a forest succession chronosequence. Agric. Ecosyst. Environ. 145, 38–48 (2011).

    Article  Google Scholar 

  • 15.

    Canullo, R. et al. Patterns of clonal growth modes along a chronosequence of post-coppice forest regeneration in beech forest of Central Italy. Fol. Geobot. 46, 271–288 (2011).

    Article  Google Scholar 

  • 16.

    Rūsiņa, S., Gavrilova, I., Roze, I. & Šulcs, V. Temporal species turnover and plant community changes across different habitats in the lake Engure nature park Latvia. Proc. Latv. Acad. Sci. Sect. B. Nat. Exact Appl. Sci. 68, 68–79 (2014).

    Google Scholar 

  • 17.

    Norden, B. & Appelqvist, T. Conceptual problems of ecological continuity and its bioindicators. Biodivers. Conserv. 10, 779–791 (2001).

    Article  Google Scholar 

  • 18.

    Bartha, S., Canullo, R., Chelli, S. & Campetella, G. Unimodal relationships of understory alpha and beta diversity along chronosequence in coppiced and unmanaged beech forests. Diversity 12, 101 (2020).

    Article  Google Scholar 

  • 19.

    Gilliam, F. S. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 57, 845–857 (2007).

    Article  Google Scholar 

  • 20.

    Campetella, G. et al. Scale dependent effects of coppicing on the species pool of late successional beech forest in the Central Apennines (Italy). Appl. Veg. Sci. 19, 474–485 (2016).

    Article  Google Scholar 

  • 21.

    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).

    Article  Google Scholar 

  • 22.

    Weiher, E. et al. Challenging theophrastus: A common core list of plant traits for functional ecology. J. Veg. Sci. 10, 609–620 (1999).

    Article  Google Scholar 

  • 23.

    Westoby, M. A Leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).

    CAS  Article  Google Scholar 

  • 24.

    Wright, I. J. et al. The worldwide leaf economic spectrum. Nature 428, 821–827 (2004).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Klimešová, J., Martínková, J. & Ottaviani, G. Belowground plant functional ecology: Towards an integrated perspective. Funct. Ecol. 32, 2115–2126 (2018).

    Article  Google Scholar 

  • 26.

    de Bello, F. et al. On the need for phylogenetic ‘corrections’ in functional trait-based approaches. Fol. Geobot. 50, 349–357 (2015).

    Article  Google Scholar 

  • 27.

    Aubin, I., Messier, C. & Bouchard, A. Can plantations develop understory biological and physical attributes of naturally regenerated forests?. Biol. Conserv. 141, 2462–2476 (2008).

    Article  Google Scholar 

  • 28.

    Dahlgren, J. P., Eriksson, O., Bolmgren, K., Strindell, M. & Ehrlén, J. Specific leaf area as a superior predictor of changes in field layer abundance during forest succession. J. Veg. Sci. 17, 577–582 (2006).

    Article  Google Scholar 

  • 29.

    Wellstein, C. et al. Effects of extreme drought on specific leaf area of grassland species: A meta-analysis of experimental studies in temperate and sub-Mediterranean systems. Glob. Change Biol. 23, 2473–2481 (2017).

    ADS  Article  Google Scholar 

  • 30.

    Lindacher, R., Böcker, R., Bemmerlein-Lux, F. A., Kleemann, A. & Haas, S. PHANART Datenbank der Gefäßpflanzen Mitteleuropas, Erklärung der Kennzahlen, Aufbau und Inhalt. Veröff. Geobot. Inst. ETH, Stift. Rübel 125, 1–436 (1995).

    Google Scholar 

  • 31.

    Turner, I. M. Sclerophylly: Primarily protective?. Funct. Ecol. 8, 669–675 (1994).

    Article  Google Scholar 

  • 32.

    Van Groenendael, J. M., Klimeš, L., Klimešová, J. & Hendriks, R. J. J. Comparative ecology of clonal plants. Philos. Trans. Roy. Soc. B 351, 1331–1339 (1996).

    ADS  Article  Google Scholar 

  • 33.

    Sammul, M., Kull, K., Niitla, T. & Mols, T. A comparison of plant communities on the basis of their clonal growth patterns. Evol. Ecol. 18, 443–467 (2004).

    Article  Google Scholar 

  • 34.

    Canullo, R. et al. Unravelling mechanisms of short-term vegetation dynamics in complex coppice forest systems. Fol. Geobot. 52, 71–81 (2017).

    Article  Google Scholar 

  • 35.

    Kidson, R. & Westoby, M. Seed mass and seedling dimensions in relation to seedling establishment. Oecologia 125, 11–17 (2000).

    ADS  CAS  Article  Google Scholar 

  • 36.

    Moles, A. T. & Westoby, M. Seed size and plant strategy across the whole life cycle. Oikos 113, 91–105 (2006).

    Article  Google Scholar 

  • 37.

    Campetella, G., Canullo, R. & Allegrini, M. C. Status and changes of ground vegetation at the CONECOFOR plots, 1999–2005. Ann. Silvicult. Res. 34, 29–48 (2008).

    Google Scholar 

  • 38.

    Wright, I. J., Reich, P. B. & Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15, 423–434 (2001).

    Article  Google Scholar 

  • 39.

    Ackerly, D. D. Functional traits of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol. Monogr. 74, 25–44 (2004).

    Article  Google Scholar 

  • 40.

    Kopecký, M., Hédl, R. & Szabó, P. Non-random extinctions dominate plant community changes in abandoned coppices. J. Appl. Ecol. 50, 79–87 (2013).

    Article  Google Scholar 

  • 41.

    Naaf, T. & Wulf, M. Traits of winner and loser species indicate drivers of herb layer changes over two decades in forests of NW Germany. J. Veg. Sci. 22, 516–527 (2011).

    Article  Google Scholar 

  • 42.

    Ottaviani, G., Martínková, J., Herben, T., Pausas, J. G. & Klimešová, J. On plant modularity traits: Functions and challenges. Trends Plant Sci. 22, 648–651 (2017).

    CAS  Article  Google Scholar 

  • 43.

    Klimešová, J. & Klimeš, L. Bud banks and their role in vegetative regeneration—A literature review and proposal for simple classification and assessment. Perspect. Plant Ecol. Evol. Syst. 8, 115–129 (2007).

    Article  Google Scholar 

  • 44.

    Chelli, S. et al. Climate is the main driver of clonal and bud bank traits in Italian forest understories. Persp. Plant Ecol. Evol. Syst. 40, 125478 (2019).

    Article  Google Scholar 

  • 45.

    Grime, J. P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

    Article  Google Scholar 

  • 46.

    Alpert, P. & Simms, E. L. The relative advantages of plasticity and fixity in different environments: When is it good for a plant to adjust?. Evol. Ecol. 16, 285–297 (2002).

    Article  Google Scholar 

  • 47.

    Denney, D. A., Jameel, M. I., Bemmels, J. B., Rochford, M. E. & Anderson, J. T. Small spaces, big impacts: Contributions of micro-environmental variation to population persistence under climate change. AoB Plants 12, 5 (2020).

    Article  Google Scholar 

  • 48.

    Swenson, N. G. et al. Temporal turnover in the composition of tropical tree communities: Functional determinism and phylogenetic stochasticity. Ecology 93, 490–499 (2012).

    Article  Google Scholar 

  • 49.

    Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W. & Freschet, G. T. Contrasting effects of plant inter-and intraspecific variation on community-level trait measures along an environmental gradient. Funct. Ecol. 27, 1254–1261 (2013).

    Article  Google Scholar 

  • 50.

    Petriccione, B. & Pompei, E. The CONECOFOR programme: general presentation, aims and co-ordination. J. Limnol. 61, 3–11 (2002).

    Article  Google Scholar 

  • 51.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  • 52.

    Bagnouls, F. & Gaussen, H. Les climats biologiques et leur classification. Ann. Geogr. 335, 193–220 (1957).

    Article  Google Scholar 

  • 53.

    FAO/UNESCO/WMO. World map of desertification. Food and Agricultural, Organization, Rome (1997).

  • 54.

    EUFORGEN. Distribution map of Beech (Fagus sylvatica), www.euforgen.org (2009).

  • 55.

    Dupouey, J. L. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests Part VIII. Assessment of Ground Vegetation (ICP-Forests, Hamburg, 1998).

    Google Scholar 

  • 56.

    Canullo, R., Campetella, G., Allegrini, M. C. & Smargiassi, V. Management of forest vegetation data series: The role of database in the frame of quality assurance procedure. J. Limnol. 61, 100–105 (2002).

    Article  Google Scholar 

  • 57.

    Klimeš, L., Klimešová, J., Hendriks, R. & van Groenendael, J. Clonal plant architectures: a comparative analysis of form and function. In The Ecology and Evolution of Clonal Plants (eds de Kroon, H. & van Groenendael, J.) 1–29 (Backhuys Publishers, Leiden, 1997).

    Google Scholar 

  • 58.

    Cerabolini, B., Ceriani, R. M., Caccianiga, M., De Andreis, R. & Raimondi, B. Seed size, shape and persistence in soil: A test on Italian flora from Alps to Mediterranean coasts. Seed Sci. Res. 13, 75–85 (2003).

    Article  Google Scholar 

  • 59.

    Royal Botanical Gardens Kew. Seed Information Database (SID), Version 7.1. Available from https://data.kew.org/sid/ (2008).

  • 60.

    Kleyer, M. et al. The LEDA Traitbase: A database of plant life-history traits of North West European Flora. J. Ecol. 96, 1266–1274 (2008).

    Article  Google Scholar 

  • 61.

    Wellstein, C. & Kuss, P. Diversity and frequency of clonal traits along natural and land-use gradients in grasslands of the Swiss Alps. Fol. Geobot. 46, 255–270 (2011).

    Article  Google Scholar 

  • 62.

    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Austr. J. Bot. 61, 167–234 (2013).

    Article  Google Scholar 

  • 63.

    Reinecke, J., Klemm, G. & Heinken, T. Vegetation change and homogenization of species composition in temperate nutrient deficient Scots pine forests after 45 yr. J. Veg. Sci. 25, 113–121 (2014).

    Article  Google Scholar 

  • 64.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 26, 32–46 (2001).

    Google Scholar 

  • 65.

    Saitou, N. & Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  • 66.

    Tamura, K., Nei, M. & Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Nat. Acad. Sci. USA 101, 11030–11035 (2004).

    ADS  CAS  Article  Google Scholar 

  • 67.

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    CAS  Article  Google Scholar 

  • 68.

    Weiher, E., Clarke, G. D. P. & Keddy, P. A. Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 81, 309 (1998).

    Article  Google Scholar 

  • 69.

    Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and regression trees (Wadsworth International Group, Belmont, 1984).

    Google Scholar 

  • 70.

    Ryo, M. & Rillig, M. C. Statistically reinforced machine learning for nonlinear patterns and variable interactions. Ecosphere 8(11), e01976 (2017).

    Article  Google Scholar 

  • 71.

    De’ath, G. & Fabricius, K. E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 81, 3178–3192 (2000).

    Article  Google Scholar 

  • 72.

    Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M. H. H. & Wagner, H. Vegan: Community Ecology Package. R package version 2.0–7. (2013) Available at https://CRAN.R-project.org/package=vegan

  • 73.

    Hothorn, T., Hornik, K. & Zeileis, A. Unbiased recursive partitioning: A conditional inference framework. J. Comput. Graph. Stat. 15, 651–674 (2006).

    MathSciNet  Article  Google Scholar 

  • 74.

    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS  Article  Google Scholar 

  • 75.

    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    Article  Google Scholar 

  • 76.

    Fabbio, G., Manetti, M. C. & Bertini, G. Aspects of biological diversity in the CONECOFOR plots. I. Structural and species diversity in the tree community. Ann. Silvicul. Res. 30, 17–28 (2006).

    Google Scholar 

  • 77.

    Trabucco, A. & Zomer, R. J. Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consortium for Spatial Information (2009).


  • Source: Ecology - nature.com

    Ecological traits, genetic diversity and regional distribution of the macroalga Treptacantha elegans along the Catalan coast (NW Mediterranean Sea)

    Pushing the envelope with fusion magnets