in

Plant resistome profiling in evolutionary old bog vegetation provides new clues to understand emergence of multi-resistance

  • 1.

    World Health Organization. Antimicrobial resistance: global report on surveillance. 2014.

  • 2.

    Kåhrström CT. Entering a post-antibiotic era? Nat Rev Microbiol. 2013;11:146.

    PubMed  PubMed Central  Google Scholar 

  • 3.

    Martínez JL. Antibiotics and antibiotic resistance genes in natural environments. Science. 2008;321:365–7.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 4.

    Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. The structure and diversity of human, animal and environmental resistomes. Microbiome. 2016;4:1–15.

    CAS  Article  Google Scholar 

  • 5.

    Chen Q-L, Cui H-L, Su J-Q, Penuelas J, Zhu Y-G. Antibiotic resistomes in plant microbiomes. Trends Plant Sci. 2019;24:530–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Cernava T, Erlacher A, Soh J, Sensen CW, Grube M, Berg G. Enterobacteriaceae dominate the core microbiome and contribute to the resistome of arugula (Eruca sativa Mill.). Microbiome. 2019;7:13.

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Blau K, Jacquiod S, Sørensen SJ, Su J-Q, Zhu Y-G, Smalla K, et al. Manure and doxycycline affect the bacterial community and its resistome in lettuce rhizosphere and bulk soil. Front Microbiol. 2019;10:725.

    PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015;13:310–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol. 2007;5:175–86.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Page SE, Baird AJ. Peatlands and global change: response and resilience. Annu Rev Environ Resour. 2016;41:35–57.

    Article  Google Scholar 

  • 11.

    Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw AJ, Turetsky MR. The Sphagnum microbiome: new insights from an ancient plant lineage. N Phytologist. 2016;211:57–64.

    CAS  Article  Google Scholar 

  • 12.

    Bragina A, Oberauner-Wappis L, Zachow C, Halwachs B, Thallinger GG, Müller H, et al. The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions. Mol Ecol. 2014;23:4498–510.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Opelt K, Chobot V, Hadacek F, Schönmann S, Eberl L, Berg G. Investigations of the structure and function of bacterial communities associated with Sphagnum mosses. Environ Microbiol. 2007;9:2795–809.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Bragina A, Berg C, Cardinale M, Shcherbakov A, Chebotar V, Berg G. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J. 2012;6:802–13.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Opelt K, Berg C, Schönmann S, Eberl L, Berg G. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME J. 2007;1:502–16.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Bragina A, Berg C, Berg G. The core microbiome bonds the Alpine bog vegetation to a transkingdom metacommunity. Mol Ecol. 2015;24:4795–807.

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Opelt K, Berg C, Berg G. The bryophyte genus Sphagnum is a reservoir for powerful and extraordinary antagonists and potentially facultative human pathogens. FEMS Microbiol Ecol. 2007;61:38–53.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol. 2010;8:251–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Mondav R, Woodcroft BJ, Kim EH, Mccalley CK, Hodgkins SB, Crill PM, et al. Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun. 2014;5:1–7.

    Article  CAS  Google Scholar 

  • 21.

    Müller CA, Oberauner-Wappis L, Peyman A, Amos GCA, EMH Wellington, Berg G. Mining for NRPS and PKS genes revealed a high diversity in the Sphagnum bog metagenome. Appl Environ Microbiol. 2015;81:5064–72.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 22.

    Bragina A, Maier S, Berg C, Müller H, Chobot V, Hadacek F, et al. Similar diversity of Alphaproteobacteria and nitrogenase gene amplicons on two related Sphagnum mosses. Front Microbiol. 2011;2:275.

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Wardwell LH, Jude BA, Moody JP, Olcerst AI, Gyure RA, Nelson RE, et al. Co-selection of mercury and antibiotic resistance in sphagnum core samples dating back 2000 years. Geomicrobiol J. 2009;26:351–60.

    CAS  Article  Google Scholar 

  • 24.

    McInnes L, Healy J, Melville J. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426. 2020.

  • 25.

    Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. 2019;37:38–47.

    CAS  Article  Google Scholar 

  • 26.

    Breiman L. Random forests. Mach Learn. 2001;45:5–32.

  • 27.

    Altmann A, Toloşi L, Sander O, Lengauer T. Permutation importance: a corrected feature importance measure. Bioinformatics. 2010;26:1340–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Streit M, Lex A, Gratzl S, Partl C, Schmalstieg D, Pfister H, et al. Guided visual exploration of genomic stratifications in cancer. Nat Methods. 2014;11:884–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrobial agents Chemother. 2013;57:3348–57.

    CAS  Article  Google Scholar 

  • 30.

    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Elbehery AHA, Aziz RK, Siam R. Antibiotic resistome: improving detection and quantification accuracy for comparative metagenomics. OMICS: A J Integr Biol. 2016;20:229–38.

    CAS  Article  Google Scholar 

  • 32.

    Boyd JA, Woodcroft BJ, Tyson GW. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 2018;46:e59.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 33.

    Allaire J. RStudio: Integrated development environment for R. Boston, MA: RStudio Inc.; 2012. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6194118/#!po=0.819672.

  • 34.

    Core Team R. R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna. 2013.

  • 35.

    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS ONE. 2013;8:e61217.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Commun Ecol Package. 2007;10:631–7.

    Google Scholar 

  • 37.

    Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27:209–20.

    Google Scholar 

  • 38.

    Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.

    PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Sieber CM, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy T, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome. 2018;6:1–15.

    Article  Google Scholar 

  • 47.

    Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016;33:1635–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.

  • 49.

    Mauri M, Elli T, Caviglia G, Uboldi G, Azzi M. RAWGraphs: a visualisation platform to create open outputs. In: Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter. New York, New York, USA: ACM Press; 2017. p. 28:1–28:5.

  • 50.

    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Vercammen K, Garcia-Armisen T, Goeders N, Van Melderen L, Bodilis J, Cornelis P. Identification of a metagenomic gene cluster containing a new class A beta-lactamase and toxin-antitoxin systems. MicrobiologyOpen. 2013;2:674–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J.Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. ISME J. 2009;3:243–51.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect. 2003;9:1–7.

    Google Scholar 

  • 54.

    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S, et al. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics. 2012;28:2678–9.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 57.

    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids. Res 2004;32:1792–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Nei M, Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford University Press; 2000.

  • 62.

    Collignon PC, Conly JM, Andremont A, McEwen SA, Aidara-Kane A, Agerso Y, et al. World Health Organization ranking of antimicrobials according to their importance in human medicine: a critical step for developing risk management strategies to control antimicrobial resistance from food animal production. Clin Infect Dis. 2016;63:1087–93.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Philippon A, Slama P, Dény P, Labia R. A structure-based classification of class A β-lactamases, a broadly diverse family of enzymes. Clin Microbiol Rev. 2016;29:29–57.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Ambler RP. The structure of β-lactamases. Philos Trans R Soc B: Biol Sci. 1980;289:321–31.

    CAS  Google Scholar 

  • 65.

    D’Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science. 2006;311:374–7.

    PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Forsberg KJ, Patel S, Wencewicz TA, Dantas G. Bacterial phylogeny structures soil resistome across habitats. Nature. 2014;509:612–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Van Goethem MW, Pierneef R, Bezuidt OKI, Van De Peer Y, Cowan DA, Makhalanyane TP. A reservoir of ´historical´antibiotic resistance genes in remote pristine Antarctic soils. Microbiome. 2018;6:40.

    PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Mahnert A, Moissl-Eichinger C, Zojer M, Bogumil D, Mizrahi I, Rattei T, et al. Man-made microbial resistances in built environments. Nat Commun. 2019;10:968.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 69.

    Carr VR, Witherden EA, Lee S, Shoaie S, Mullany P, Proctor GB, et al. Abundance and diversity of resistomes differ between healthy human oral cavities and gut. Nat Commun. 2020;11:693.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Bragina A, Cardinale M, Berg C, Berg G, Schmid M, Zentrum H. Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale. Front Microbiol. 2013;4:394.

    PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    Crofts TS, Gasparrini AJ, Dantas G. Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol. 2017;15:422.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 72.

    Tyson GH, McDermott PF, Li C, Chen Y, Tadesse DA, Mukherjee S, et al. WGS accurately predicts antimicrobial resistance in Escherichia coli. J Antimicrobial Chemother. 2015;70:2763–9.

    CAS  Article  Google Scholar 

  • 73.

    Schmidt K, Mwaigwisya S, Crossman L, Doumith M, Munroe D, Pires C, et al. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J Antimicrobial Chemother. 2016;72:104–14.

    Article  CAS  Google Scholar 

  • 74.

    Andersen H, Connolly N, Bangar H, Staat M, Mortensen J, Deburger B, et al. Use of shotgun metagenome sequencing to detect fecal colonization with multidrug-resistant bacteria in children. J Clin Microbiol. 2016;54:1804–13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    Martinez JL, Sánchez MB, Martínez-Solano L, Hernandez A, Garmendia L, Fajardo A, et al. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev. 2009;33:430–49.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 76.

    Pehrsson EC, Forsberg KJ, Gibson MK, Ahmadi S, Dantas G. Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs. Front Microbiol. 2013;4:1–11.

    Article  Google Scholar 

  • 77.

    Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis. 2002;34:482–92.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 78.

    Belova SE, Pankratov TA, Dedysh SN. Bacteria of the genus Burkholderia as a typical component of the microbial community of Sphagnum peat bogs. Microbiology. 2006;75:90–96.

    CAS  Article  Google Scholar 

  • 79.

    Le Fléche-MatéosA, Kügler JH, Hansen SH, Syldatk C, Hausmann R, Lomprez F, et al. Rouxiella badensis sp. nov. and Rouxiella silvae sp. nov. isolated from peat bog soil and emendation description of the genus Rouxiella. Int J Syst Evolut Microbiol. 2017;67:1255–9.

    Article  CAS  Google Scholar 

  • 80.

    Coenye T, Falsen E, Hoste B, Ohle M, Goris J, Govan JRW, et al. Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norimbergensis comb. nov 2000;50:887–99.

    CAS  Google Scholar 

  • 81.

    Green H, Jones AM. Emerging Gram-negative bacteria: pathogenic or innocent bystanders. Curr Opin Pulm Med. 2018;24:592–8.

    PubMed  Article  PubMed Central  Google Scholar 

  • 82.

    Schneider I, Queenan AM, Bauernfeind A. Novel carbapenem-hydrolyzing oxacillinase OXA-62 from Pandoraea pnomenusa. Antimicrobial Agents Chemother. 2006;50:1330–5.

    CAS  Article  Google Scholar 

  • 83.

    Mahlen SD. Serratia infections: from military experiments to current practice. Clin Microbiol Rev. 2011;24:755–91.

    PubMed  PubMed Central  Article  Google Scholar 

  • 84.

    Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW. Pseudomonas genomes: Diverse and adaptable. FEMS Microbiol Rev. 2011;35:652–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 85.

    Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, et al. A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol. 2017;8:11.

    PubMed  PubMed Central  Google Scholar 

  • 86.

    Vandamme P, Opelt K, Knochel N, Berg C, Schonmann S, De Brandt E, et al. Burkholderia bryophila sp. nov. and Burkholderia megapolitana sp. nov., moss-associated species with antifungal and plant-growth-promoting properties. Int J Syst Evolut Microbiol. 2007;57:2228–35.

    CAS  Article  Google Scholar 

  • 87.

    Berg G, Eberl L, Hartmann A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol. 2005;7:1673–85.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 88.

    Lycus P, Lovise Bøthun K, Bergaust L, Peele Shapleigh J, Reier Bakken L, Frostegård Å. Phenotypic and genotypic richness of denitrifiers revealed by a novel isolation strategy. ISME J. 2017;11:2219–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 89.

    Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature. 2015;528:364–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 90.

    Papanicolaou GA, Medeiros AA, Jacoby GA. Novel plasmid-mediated β-lactamase (MIR-1) conferring resistance to oxyimino- and α-methoxy β-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrobial Agents Chemother. 1990;34:2200–9.

    CAS  Article  Google Scholar 

  • 91.

    Bauernfeind A, Stemplinger I, Jungwirth R, Ernst S, Casellas JM. Sequences of β-lactamase genes encoding CTX-M-1 (MEN-1) and CTX-M-2 and relationship of their amino acid sequences with those of other β-lactamases. Antimicrobial Agents Chemother. 1996;40:509–13.

    CAS  Article  Google Scholar 

  • 92.

    Dahmen S, Mansour W, Charfi K, Boujaafar N, Arlet G, Bouallègue O. Imipenem resistance in Klebsiella pneumoniae is associated to the combination of plasmid-mediated CMY-4 AmpC β-lactamase and loss of an outer membrane protein. Microb Drug Resistance. 2012;18:479–83.

    CAS  Article  Google Scholar 

  • 93.

    Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, et al. Bacterial phylogeny structures soil resistomes across habitats. Nature. 2014;509:612–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 94.

    Kurm V, van der Putten WH, de Boer W, Naus-Wiezer S, Hol WHG. Low abundant soil bacteria can be metabolically versatile and fast growing. Ecology. 2017;98:555–64.

    PubMed  Article  PubMed Central  Google Scholar 

  • 95.

    Vadstein O, Attramadal KJK, Bakke I, Olsen Y. K-Selection as microbial community management strategy: a method for improved viability of larvae in aquaculture. Front Microbiol. 2018;9:2730.

    PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale

    Power-free system harnesses evaporation to keep items cool