in

Plasticity in nest site choice behavior in response to hydric conditions in a reptile

  • 1.

    Mousseau, T. A. & Fox, C. W. The adaptive significance of maternal effects. Trends Ecol. Evol. 13, 403–407 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Hagan, H. R. A brief analysis of viviparity in insects. J. N. Y. Entomol. Soc. 56, 63–68 (1948).

    Google Scholar 

  • 3.

    Resetarits, W. J. Jr. Oviposition site choice and life history evolution. Am. Zool. 36, 205–215 (1996).

    Article  Google Scholar 

  • 4.

    Schwarzkopf, L. & Andrews, R. M. Are moms manipulative or just selfish? Evaluating the “maternal manipulation hypothesis” and implications for life-history studies of reptiles. Herpetologica 68, 147–159 (2012).

    Article  Google Scholar 

  • 5.

    Bernardo, J. Maternal effects in animal ecology. Am. Zool. 36, 83–105 (1996).

    Article  Google Scholar 

  • 6.

    Réale, D. & Roff, D. A. Quantitative genetics of oviposition behaviour and interactions among oviposition traits in the sand cricket. Anim. Behav. 64, 397–406 (2002).

    Article  Google Scholar 

  • 7.

    McGaugh, S. E., Schwanz, L. E., Bowden, R. M., Gonzalez, J. E. & Janzen, F. J. Inheritance of nesting behaviour across natural environmental variation in a turtle with temperature-dependent sex determination. Proc. R. Soc. B Biol. Sci. 277, 1219–1226 (2010).

    Article  Google Scholar 

  • 8.

    Seymour, R. S. & Ackerman, R. A. Adaptations to underground nesting in birds and reptiles. Am. Zool. 20, 437–447 (1980).

    Article  Google Scholar 

  • 9.

    Booth, D. T. Influence of incubation temperature on hatchling phenotype in reptiles. Physiol. Biochem. Zool. 79, 274–281 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Deeming, D. C. in Temperature-Dependent Sex Determination in Vertebrates (eds Valenzuela, N. & Lance, V. A.) 33–41 (Smithsonian Books, 2004).

  • 11.

    Deeming, D. C. & Ferguson, M. in Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles (eds Deeming, D. C. & Ferguson, M. W. J.) 147–171 (Cambridge University Press, Cambridge, 1991).

  • 12.

    Schwarzkopf, L. & Brooks, R. J. Nest-site selection and offspring sex ratio in painted turtles, Chrysemys picta. Copeia 1987, 53–61 (1987).

    Article  Google Scholar 

  • 13.

    Refsnider, J. M. & Janzen, F. J. Putting eggs in one basket: ecological and evolutionary hypotheses for variation in oviposition-site choice. Annu. Rev. Ecol. Evol. Syst. 41, 39–57 (2010).

    Article  Google Scholar 

  • 14.

    Doody, J. S. et al. Nest site choice compensates for climate effects on sex ratios in a lizard with environmental sex determination. Evol. Ecol. 20, 307–330 (2006).

    Article  Google Scholar 

  • 15.

    Ewert, M. A., Lang, J. W. & Nelson, C. E. Geographic variation in the pattern of temperature-dependent sex determination in the American snapping turtle (Chelydra serpentina). J. Zool. 265, 81–95 (2005).

    Article  Google Scholar 

  • 16.

    Doody, J. S. Superficial lizards in cold climates: nest site choice along an elevational gradient. Austral. Ecol. 34, 773–779 (2009).

    Article  Google Scholar 

  • 17.

    Doody, J. S. & Moore, J. A. Conceptual model for thermal limits on the distribution of reptiles. Herpetol. Conserv. Biol. 5, 283–289 (2010).

    Google Scholar 

  • 18.

    Delmas, V., Bonnet, X., Girondot, M. & Prévot-Julliard, A.-C. Varying hydric conditions during incubation influence egg water exchange and hatchling phenotype in the red-eared slider turtle. Physiol. Biochem. Zool. 81, 345–355 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Fitch, H. S. Reproductive cycles in lizards and snakes. Univ. Kans. Mus. Nat. Hist. Misc. Publ. 52, 1–247 (1970).

    Google Scholar 

  • 20.

    Gutzke, W. H., Packard, G. C., Packard, M. & Boardman, T. J. Influence of the hydric and thermal environments on eggs and hatchlings of painted turtles (Chrysemys picta). Herpetologica 43, 393–404 (1987).

    Google Scholar 

  • 21.

    Muth, A. Physiological ecology of desert iguana (Dipsosaurus dorsalis) eggs: temperature and water relations. Ecology 61, 1335–1343 (1980).

    Article  Google Scholar 

  • 22.

    Plumer, M. & Snell, H. Nest site selection and water relations of eggs in the snake, Opheodrys aestirus. Copeia 1988, 58–61 (1988).

    Article  Google Scholar 

  • 23.

    Reedy, A. M., Zaragoza, D. & Warner, D. A. Maternally chosen nest sites positively affect multiple components of offspring fitness in a lizard. Behav. Ecol. 24, 39–46 (2013).

    Article  Google Scholar 

  • 24.

    Socci, A. M., Schlaepfer, M. A. & Gavin, T. A. The importance of soil moisture and leaf cover in a female lizard’s (Norops polylepis) evaluation of potential oviposition sites. Herpetologica 61, 233–240 (2005).

    Article  Google Scholar 

  • 25.

    Warner, D. A. & Andrews, R. M. Laboratory and field experiments identify sources of variation in phenotypes and survival of hatchling lizards. Biol. J. Lin. Soc. 76, 105–124 (2002).

    Article  Google Scholar 

  • 26.

    Li, S. R. et al. Female lizards choose warm, moist nests that improve embryonic survivorship and offspring fitness. Funct. Ecol. 32, 416–423 (2018).

    Article  Google Scholar 

  • 27.

    Warner, D. A., Jorgensen, C. F. & Janzen, F. J. Maternal and abiotic effects on egg mortality and hatchling size of turtles: temporal variation in selection over seven years. Funct. Ecol. 24, 857–866 (2010).

    Article  Google Scholar 

  • 28.

    Black, C. P., Birchard, G. F., Schuett, G. W. & Black, V. D. in Respiration and Metabolism of Embryonic Vertebrates (ed Seymour, R. S.) 137–145 (Springer, Berlin, 1984).

  • 29.

    Hayes, W. K., Carter, R. L., Cyril, S. & Thornton, B. in Iguanas: Biology and Conservation (eds Alberts, A. C., Carter, R. L., Hayes, W. K., & Martins, E. P.) 232–257 (University of California Press, 2004).

  • 30.

    Iverson, J. B., Hines, K. N. & Valiulis, J. M. The nesting ecology of the Allen Cays rock iguana, Cyclura cychlura inornata in the Bahamas. Herpetol. Monogr. 18, 1–36 (2004).

    Article  Google Scholar 

  • 31.

    Kam, Y.-C. Effects of simulated flooding on metabolism and water balance of turtle eggs and embryos. J. Herpetol. 28, 173–178 (1994).

    Article  Google Scholar 

  • 32.

    Moll, E. O. & Legler, J. M. The life history of a neotropical slider turtle, Pseudemys scripta (Schoepff), in Panama. Bull. Los Angel.Cty. Mus.Nat. Hist. 11, 1–102 (1971).

    Google Scholar 

  • 33.

    Tracy, C. R. Water relations of parchment-shelled lizard (Sceloporus undulatus) eggs. Copeia 3, 478–482 (1980).

    Article  Google Scholar 

  • 34.

    Mortimer, J. A. The influence of beach sand characteristics on the nesting behavior and clutch survival of green turtles (Chelonia mydas). Copeia 1990, 802–817 (1990).

    Article  Google Scholar 

  • 35.

    Platt, S. G. & Thorbjarnarson, J. B. Nesting ecology of the American crocodile in the coastal zone of Belize. Copeia 2000, 869–873 (2000).

    Article  Google Scholar 

  • 36.

    Snell, H. L. & Tracy, C. R. Behavioral and morphological adaptations by Galapagos land iguanas (Conolophus subcristatus) to water and energy requirements of eggs and neonates. Am. Zool. 25, 1009–1018 (1985).

    Article  Google Scholar 

  • 37.

    Thompson, M., Packard, G., Packard, M. & Rose, B. Analysis of the nest environment of tuatara Sphenodon punctatus. J. Zool. 238, 239–251 (1996).

    Article  Google Scholar 

  • 38.

    Bodensteiner, B. L., Mitchell, T. S., Strickland, J. T. & Janzen, F. J. Hydric conditions during incubation influence phenotypes of neonatal reptiles in the field. Funct. Ecol. 29, 710–717 (2015).

    Article  Google Scholar 

  • 39.

    Doody, J. S., James, H., Colyvas, K., Mchenry, C. R. & Clulow, S. Deep nesting in a lizard, déjà vu devil’s corkscrews: first helical reptile burrow and deepest vertebrate nest. Biol. J. Lin. Soc. 116, 13–26 (2015).

    Article  Google Scholar 

  • 40.

    Doody, J. S. et al. Cryptic and complex nesting in the yellow-spotted monitor, Varanus panoptes. J. Herpetol. 48, 363–370 (2014).

    Article  Google Scholar 

  • 41.

    Doody, J. S. et al. Deep, helical, communal nesting and emergence in the sand monitor: ecology informing paleoecology?. J. Zool. 305, 88–95 (2018).

    Article  Google Scholar 

  • 42.

    Doody, J. S. et al. Deep communal nesting by yellow-spotted monitors in a desert ecosystem: indirect evidence for a response to extreme dry conditions. Herpetologica 74, 306–310 (2018).

    Article  Google Scholar 

  • 43.

    Bureau of Meteorology. Average Annual, Seasonal and Monthly Rainfall, https://www.bom.gov.au/jsp/ncc/climate_averages/rainfall/index.jsp (2019).

  • 44.

    Cogger, H. Reptiles and Amphibians of Australia (CSIRO Publishing, 2014).

  • 45.

    Doody, J. S. et al. Chronic effects of an invasive species on an animal community. Ecology 98, 2093–2101 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Doody, J. S. et al. Invasive toads shift predator–prey densities in animal communities by removing top predators. Ecology 96, 2544–2554 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Shea, G. & Sadlier, R. An ovigerous argus monitor, Varanus panoptes panoptes. Herpetofauna 31, 132–133 (2001).

    Google Scholar 

  • 48.

    Doody, J. S. et al. Impacts of the invasive cane toad on aquatic reptiles in a highly modified ecosystem: the importance of replicating impact studies. Biol. Invasions 16, 2303–2309 (2014).

    Article  Google Scholar 

  • 49.

    Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).

    MathSciNet  Article  Google Scholar 

  • 50.

    Telemeco, R. S., Elphick, M. J. & Shine, R. Nesting lizards (Bassiana duperreyi) compensate partly, but not completely, for climate change. Ecology 90, 17–22 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Wilson, D. S. Nest-site selection: microhabitat variation and its effects on the survival of turtle embryos. Ecology 79, 1884–1892 (1998).

    Article  Google Scholar 

  • 52.

    Refsnider, J., Bodensteiner, B., Reneker, J. & Janzen, F. Nest depth may not compensate for sex ratio skews caused by climate change in turtles. Anim. Conserv. 16, 481–490 (2013).

    Article  Google Scholar 

  • 53.

    Morjan, C. L. Variation in nesting patterns affecting nest temperatures in two populations of painted turtles (Chrysemys picta) with temperature-dependent sex determination. Behav. Ecol. Sociobiol. 53, 254–261 (2003).

    Article  Google Scholar 

  • 54.

    Refsnider, J. M. & Janzen, F. J. Behavioural plasticity may compensate for climate change in a long-lived reptile with temperature-dependent sex determination. Biol. Conserv. 152, 90–95 (2012).

    Article  Google Scholar 

  • 55.

    Georges, A., Limpus, C. & Stoutjesdijk, R. Hatchling sex in the marine turtle Caretta caretta is determined by proportion of development at a temperature, not daily duration of exposure. J. Exp. Zool. 270, 432–444 (1994).

    Article  Google Scholar 

  • 56.

    Barbault, R. Population dynamics and reproductive patterns of three African skinks. Copeia 1976, 483–490 (1976).

    Article  Google Scholar 

  • 57.

    Brown, G. & Shine, R. Why do most tropical animals reproduce seasonally? Testing hypotheses on an Australian snake. Ecology 87, 133–143 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Van Dyke, J. U. in Reproductive Biology and Phylogeny of Lizards and Tuatara (ed Rheubert, J. L.) 121–155 (CRC Press, New York, 2014).

  • 59.

    James, C. & Shine, R. The seasonal timing of reproduction. Oecologia 67, 464–474 (1985).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Packard, G. C., Miller, K. & Packard, M. J. A protocol for measuring water potential in subterranean nests of reptiles. Herpetologica 48, 202–209 (1992).

    Google Scholar 

  • 61.

    Taylor, J. A. & Tulloch, D. Rainfall in the wet-dry tropics: extreme events at Darwin and similarities between years during the period 1870–1983 inclusive. Aust. J. Ecol. 10, 281–295 (1985).

    Article  Google Scholar 

  • 62.

    de Almeida Prado, C. P., Uetanabaro, M. & Lopes, F. S. Reproductive strategies of Leptodactylus chaquensis and L. podicipinus in the Pantanal Brazil. J. Herpetol. 34, 135–139 (2000).

    Article  Google Scholar 

  • 63.

    Newton, I. Population limitation in birds: the last 100 years. Brit. Birds 100, 518–539 (2007).

    Google Scholar 

  • 64.

    James, C. D. & Whitford, W. G. An experimental study of phenotypic plasticity in the clutch size of a lizard. Oikos 70, 49–56 (1994).

    Article  Google Scholar 

  • 65.

    Jolly, C. J., Shine, R. & Greenlees, M. J. The impacts of a toxic invasive prey species (the cane toad, Rhinella marina) on a vulnerable predator (the lace monitor, Varanus varius). Biol. Invasions 18, 1499–1509 (2016).

    Article  Google Scholar 

  • 66.

    Christian, K. in Varanoid Lizards of the World (eds Pianka, E. R. & King, D. R.) 423–429 (Indiana University Press, 2004).

  • 67.

    Christian, K. A., Corbett, L., Green, B. & Weavers, B. W. Seasonal activity and energetics of two species of varanid lizards in tropical Australia. Oecologia 103, 349–357 (1995).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    Warner, D. A., Du, W.-G. & Georges, A. Introduction to the special issue—Developmental plasticity in reptiles: physiological mechanisms and ecological consequences. J. Exp. Zool. A Ecol. Int. Physiol. 329, 153–161 (2018).

    Google Scholar 

  • 69.

    While, G. M. et al. Patterns of developmental plasticity in response to incubation temperature in reptiles. J. Exp. Zool. Part A Ecol. Integr. Physiol. 329, 162–176 (2018).

    Google Scholar 

  • 70.

    Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Publisher Correction: Science diplomacy for plant health

    Validating the physics behind the new MIT-designed fusion experiment