Burt, A. & Trivers, R. Genes in Conflict: The Biology of Selfish Genetic Elements (Belknap Press, Cambridge, 2006).
Lindholm, A. K. et al. The ecology and evolutionary dynamics of meiotic drive. Trends Ecol. Evolution 31, 316–326 (2016).
Champer, J., Kim, I. K., Champer, S. E., Clark, A. G. & Messer, P. W. Performance analysis of novel toxin-antidote CRISPR gene drive systems. BMC Biol. 18, 1–17 (2020).
Godwin, J. et al. Rodent gene drives for conservation: opportunities and data needs. Proc. R. Soc. B 286, 20191606 (2019).
Champer, J., Buchman, A. & Akbari, O. S. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat. Rev. Genet. 17, 146 (2016).
Haig, D. & Bergstrom, C. Multiple mating, sperm competition and meiotic drive. J. Evol. Biol. 8, 265–282 (1995).
Manser, A., Lindholm, A. K., König, B. & Bagheri, H. C. Polyandry and the decrease of a selfish genetic element in a wild house mouse population. Evolution 65, 2435–2447 (2011).
Holman, L., Price, T. A., Wedell, N. & Kokko, H. Coevolutionary dynamics of polyandry and sex-linked meiotic drive. Evolution 69, 709–720 (2015).
Price, T. & Wedell, N. Selfish genetic elements and sexual selection: their impact on male fertility. Genetica 134, 99–111 (2008).
Wedell, N. The dynamic relationship between polyandry and selfish genetic elements. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 368, 1–10 (2013).
Sutter, A. & Lindholm, A. K. Detrimental effects of an autosomal selfish genetic element on sperm competitiveness in house mice. Proc. R. Soc. B 282, 20150974 (2015).
Manser, A., Lindholm, A. K., Simmons, L. W. & Firman, R. C. Sperm competition suppresses gene drive among experimentally evolving populations of house mice. Mol. Ecol. 20, 5784–5792 (2017).
Price, T., Hodgson, D., Lewis, Z., Hurst, G. & Wedell, N. Selfish genetic elements promote polyandry in a fly. Science 332, 1241–1243 (2008).
Price, T. et al. Sex ratio distorter reduces sperm competitive ability in an insect. Evolution 62, 1644–1652 (2008).
Herrmann, B. G. & Bauer, H. The Mouse t-haplotype: a Selfish Chromosome—Genetics, Molecular Mechanism, and Evolution, Vol. 3, 297–314 (Cambridge University Press, Cambridge, 2012).
Lindholm, A. K., Musolf, K., Weidt, A. & König, B. Mate choice for genetic compatibility in the house mouse. Ecol. Evolution 3, 1231–1247 (2013).
Dean, M., Ardlie, K. & Nachman, M. The frequency of multiple paternity suggests that sperm competition is common in house mice (Mus domesticus). Mol. Ecol. 15, 4141–4151 (2006).
Firman, R. & Simmons, L. Polyandry facilitates postcopulatory inbreeding avoidance in house mice. Evolution 62, 603–611 (2008).
Thonhauser, K. E., Thoss, M., Musolf, K., Klaus, T. & Penn, D. J. Multiple paternity in wild house mice (Mus musculus musculus): effects on offspring genetic diversity and body mass. Ecol. Evolution 4, 200–209 (2013).
Auclair, Y., König, B. & Lindholm, A. K. Socially mediated polyandry: a new benefit of communal nesting in mammals. Behav. Ecol. 25, 1467–1473 (2014).
Rolland, C., Macdonald, D., de Fraipont, M. & Berdoy, M. Free female choice in house mice: leaving best for last. Behaviour 140, 1371–1388 (2003).
Thonhauser, K. E., Raveh, S., Hettyey, A., Beissmann, H. & Penn, D. J. Scent marking increases male reproductive success in wild house mice. Anim. Behav. 86, 1013–1021 (2013).
Thonhauser, K. E., Raveh, S. & Penn, D. J. Multiple paternity does not depend on male genetic diversity. Anim. Behav. 93, 135–141 (2014).
Bronson, F. The reproductive ecology of the house mouse. Q. Rev. Biol. 54, 265–299 (1979).
Evans, J. P. & Simmons, L. W. The genetic basis of traits regulating sperm competition and polyandry: can selection favour the evolution of good-and sexy-sperm? Genetica 134, 5 (2008).
McFarlane, E. S. et al. The heritability of multiple male mating in a promiscuous mammal. Biol. Lett. 7, 368–371 (2011).
Reid, J. M., Arcese, P., Sardell, R. J. & Keller, L. F. Heritability of female extra-pair paternity rate in song sparrows (Melospiza melodia). Proc. R. Soc. B 278, 1114–1120 (2011).
Sutter, A. & Lindholm, A. K. Meiotic drive changes sperm precedence patterns in house mice: potential for male alternative mating tactics? BMC Evolut. Biol. 16, 133 (2016).
Sutter, A. & Lindholm, A. K. The copulatory plug delays ejaculation by rival males and affects sperm competition outcome in house mice. J. Evol. Biol. 29, 1617–1630 (2016).
Atlan, A., Joly, D., Capillon, C. & Montchamp-Moreau, C. Sex-ratio distorter of Drosophila simulans reduces male productivity and sperm competition ability. J. Evol. Biol. 17, 744 (2004).
Wilkinson, G., Johns, P., Kelleher, E., Muscedere, M. & Lorsong, A. Fitness effects of X chromosome drive in the stalk-eyed fly, Cyrtodiopsis dalmanni. J. Evol. Biol. 19, 1851–1860 (2006).
Angelard, C., Montchamp-Moreau, C. & Joly, D. Female-driven mechanisms, ejaculate size and quality contribute to the lower fertility of sex-ratio distorter males in Drosophila simulans. BMC Evol. Biol. 8, 1–12 (2008).
Dyer, K. A. & Hall, D. W. Fitness consequences of a non-recombining sex-ratio drive chromosome can explain its prevalence in the wild. Proc. R. Soc. B 286, 20192529 (2019).
Keais, G., Lu, S. & Perlman, S. Autosomal suppression and fitness costs of an old driving X chromosome in Drosophila testacea. J. Evol. Biol. 33, 619–628 (2020).
Price, T. A., Lewis, Z., Smith, D. T., Hurst, G. D. & Wedell, N. Sex ratio drive promotes sexual conflict and sexual coevolution in the fly Drosophila pseudoobscura. Evolution 64, 1504–1509 (2010).
Runge, J.-N. & Lindholm, A. K. Carrying a selfish genetic element predicts increased migration propensity in free-living wild house mice. Proc. R. Soc. B 285, 20181333 (2018).
Meade, L., Finnegan, S., Kad, R., Fowler, K. & Pomiankowski, A. Adaptive maintenance of fertility in the face of meiotic drive. Am. Naturalist 195, 743–751 (2019).
Zeh, J. & Zeh, D. The evolution of polyandry II: post-copulatory defences against genetic incompatibility. Proc. R. Soc. B 264, 69–75 (1997).
Yasui, Y. A “good-sperm” model can explain the evolution of costly multiple mating by females. Am. Naturalist 149, 573–584 (1997).
Ferrari, M., Lindholm, A. K. & König, B. Fitness consequences of female alternative reproductive tactics in house mice (Mus musculus domesticus). Am. Naturalist 193, 106–124 (2019).
Ardlie, K. G. & Silver, L. M. Low frequency of t haplotypes in natural populations of house mice (Mus musculus domesticus). Evolution 52, 1185–1196 (1998).
Ardlie, K. Putting the brake on drive: meiotic drive of t haplotype in natural populations of mice. Trends Genet. 14, 189–193 (1998).
Young, S. A proposition on the population dynamics of the sterile t alleles in the house mouse. Evolution 21, 190–192 (1967).
Petras, M. & Topping, J. The maintenance of polymorphisms at two loci in house mouse (Mus musculus) populations. Genome 25, 190–201 (1983).
Bull, J. Lethal gene drive selects inbreeding. Evolution 1, 1–16 (2017).
van Boven, M. & Weissing, F. J. Segretation distortion in a deme-structured population: opposing demands of gene, individual and group selection. J. Evol. Biol. 12, 80–93 (1999).
Nunney, L. The role of deme size, reproductive patterns, and dispersal in the dynamics of t-lethal haplotypes. Evolution 47, 1342–1359 (1993).
Lenington, S. The t complex: a story of genes, behavior, and populations. Adv. Study Behav. 20, 51–86 (1991).
Sutter, A. & Lindholm, A. K. No evidence for female discrimination against male house mice carrying a selfish genetic element. Curr. Zool. 62, zow063 (2016).
Manser, A., König, B. & Lindholm, A. Female house mice avoid fertilization by t haplotype incompatible males in a mate choice experiment. J. Evol. Biol. 28, 54–64 (2015).
Manser, A., Lindholm, A. K. & Weissing, F. J. The evolution of costly mate choice against segregation distorters. Evolution 71, 2817–2828 (2017).
Price, T., Verspoor, R. & Wedell, N. Ancient gene drives: an evolutionary paradox. Proc. R. Soc. B 286, 20192267 (2019).
Galizi, R. et al. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat. Commun. 5, 3977 (2014).
Galizi, R. et al. A CRISPR-Cas9 sex-ratio distortion system for genetic control. Sci. Rep. 6, 31139 (2016).
Piaggio, A. J. et al. Is it time for synthetic biodiversity conservation? Trends Ecol. Evolution 32, 97–107 (2017).
Leitschuh, C. M. et al. Developing gene drive technologies to eradicate invasive rodents from islands. J Responsible Innov. 5, S121–138 (2017).
Manser, A. et al. Controlling invasive rodents via synthetic gene drive and the role of polyandry. Proc. R. Soc. B 286, 20190852 (2019).
Howald, G. et al. Invasive rodent eradication on islands. Conserv. Biol. 21, 1258–1268 (2007).
Prowse, T. A., Adikusuma, F., Cassey, P., Thomas, P. & Ross, J. V. A Y-chromosome shredding gene drive for controlling pest vertebrate populations. Elife 8, e41873 (2019).
König, B. & Lindholm, A. The Complex Social Environment of Female House Mice (Mus domesticus), 114–134 (Cambridge University Press, Cambridge, 2012).
Berry, R., Tattersall, F. & Hurst, J. Genus Mus (The Mammal Society Southampton, 2008).
Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).
Brambell, F. The influence of lactation on the implantation of the mammalian embryo. Am. J. Obstet. Gynecol. 33, 942–953 (1937).
Schimenti, J. & Hammer, M. Rapid identification of mouse t haplotype by PCR polymorphism (PCRP). Mouse Genome 108 (1990).
Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).
Hadfield, J. D. et al. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
Bruck, D. Male segregation ratio advantage as a factor in maintaining lethal alleles in wild populations of house mice. Proc. Natl Acad. Sci. USA 43, 152–158 (1957).
Source: Ecology - nature.com