in

Population genomics in two cave-obligate invertebrates confirms extremely limited dispersal between caves

  • 1.

    Rétaux, S. & Casane, D. Evolution of eye development in the darkness of caves: adaptation, drift, or both?. EvoDevo 4, 1–12 (2013).

    Article  Google Scholar 

  • 2.

    Culver, D. C. & Pipan, T. The Biology of Caves and Other Subterranean Habitats (Oxford University Press, Oxford, 2019).

    Google Scholar 

  • 3.

    Poulson, T. L. & White, W. B. The cave environment. Science (80–) 165, 971–981 (1969).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Peck, S. B. Evolution of adult morphology and life-history characters in cavernicolous Ptomaphagus beetles. Evolution (N. Y). 40, 1021–1030 (1986).

    Google Scholar 

  • 5.

    Trontelj, P., Borko, Š & Delić, T. Testing the uniqueness of deep terrestrial life. Sci. Rep. 9, 1–9 (2019).

    CAS  Article  Google Scholar 

  • 6.

    Polo-Cavia, N. & Gomez-Mestre, I. Pigmentation plasticity enhances crypsis in larval newts: associated metabolic cost and background choice behaviour. Sci. Rep. 7, 1–10 (2017).

    Article  CAS  Google Scholar 

  • 7.

    Cook, L. M. & Saccheri, I. J. The peppered moth and industrial melanism: evolution of a natural selection case study. Heredity (Edinb.). 110, 207–212 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Stevens, M. & Merilaita, S. Animal camouflage: current issues and new perspectives. Philos. Trans. R. Soc. B. Biol. Sci. 364, 423–427 (2009).

    Article  Google Scholar 

  • 9.

    Culver, D. C., Master, L. L., Christman, M. C. & Hobbs, H. H. Obligate cave fauna of the 48 contiguous United States. Conserv. Biol. 14, 386–401 (2000).

    Article  Google Scholar 

  • 10.

    Niemiller, M. L. & Zigler, K. S. Patterns of cave biodiversity and endemism in the Appalachians and Interior Plateau of Tennessee, USA. PLoS ONE 8, e64177 (2013).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Christman, M. C., Culver, D. C., Madden, M. K. & White, D. Patterns of endemism of the eastern North American cave fauna. J. Biogeogr. 32, 1441–1452 (2005).

    Article  Google Scholar 

  • 12.

    Snowman, C. V., Zigler, K. S. & Hedin, M. Caves as islands: mitochondrial phylogeography of the cave-obligate spider species Nesticus barri (Araneae: Nesticidae). J. Arachnol. 38, 49–56 (2010).

    Article  Google Scholar 

  • 13.

    Dixon, G. B. & Zigler, K. S. Cave-obligate biodiversity on the campus of Sewanee: The University of the South, Franklin County, Tennessee. Northeast. Nat. 10, 251–266 (2011).

    Google Scholar 

  • 14.

    Christman, M. C. & Culver, D. C. The relationship between cave biodiversity and available habitat. J. Biogeogr. 28, 367–380 (2001).

    Article  Google Scholar 

  • 15.

    Zigler, K. S., Niemiller, M. L. & Fenolio, D. B. Cave Biodiversity of the Southern Cumberland Plateau. In 2014 National Speleological Society Convention Guidebook, 159–163 (National Speleological Society, 2014).

  • 16.

    Hedin, M. C. Speciational history in a diverse clade of habitat-specialized spiders (Araneae: Nesticidae: Nesticus): inferences from geographic-based sampling. Evolution (N. Y.). 51, 1929–1945 (1997).

    Google Scholar 

  • 17.

    Hedin, M. & Dellinger, B. Descriptions of a new species and previously unknown males of Nesticus (Araneae: Nesticidae) from caves in Eastern North America, with comments on species rarity. Zootaxa 19, 1–19 (2005).

    Article  Google Scholar 

  • 18.

    Carver, L. M., Perlaky, P., Cressler, A. & Zigler, K. S. Reproductive seasonality in Nesticus (Araneae: Nesticidae) cave spiders. PLoS ONE 11, 7–8 (2016).

    Article  CAS  Google Scholar 

  • 19.

    Leray, V. L., Caravas, J., Friedrich, M. & Zigler, K. S. Mitochondrial sequence data indicate “Vicariance by Erosion” as a mechanism of species diversification in North American Ptomaphagus (Coleoptera, Leiodidae, Cholevinae ) cave beetles. 57, 35–57 (2019).

  • 20.

    Wang, S., Meyer, E., McKay, J. K. & Matz, M. V. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat. Methods 9, 808–810 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Rokas, A. & Abbot, P. Harnessing genomics for evolutionary insights. Trends Ecol. Evol. 24, 192–200 (2009).

    PubMed  Article  Google Scholar 

  • 22.

    Nunziata, S. O. & Weisrock, D. W. Estimation of contemporary effective population size and population declines using RAD sequence data. Heredity 120, 196–207. https://doi.org/10.1038/s41437-017-0037-y (2018).

    CAS  Article  PubMed  Google Scholar 

  • 23.

    Ortuño, V. M. et al. The ‘alluvial mesovoid shallow substratum’, a new subterranean habitat. PLoS ONE 8, 1–16 (2013).

    Article  CAS  Google Scholar 

  • 24.

    Mammola, S. et al. Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Superficiel (MSS). Naturwissenschaften 103, 88 (2016).

    PubMed  Article  CAS  Google Scholar 

  • 25.

    Wakefield, K. R. & Zigler, K. S. Obligate subterranean fauna of Carter State Natural Area, Franklin County, Tennessee. Speleobiol. Notes 4, 24–28 (2012).

    Google Scholar 

  • 26.

    Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science (80–). 348, 1460–1462 (2015).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Matz, M. V., Treml, E. A., Aglyamova, G. V. & Bay, L. K. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLoS Genet. 14, 1–19 (2018).

    Article  CAS  Google Scholar 

  • 28.

    Matz, M. V. 2bRAD_denovo git repository. https://github.com/z0on/2bRAD_denovo (2019). Accessed 12 September 2020.

  • 29.

    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 32.

    Nielsen, R., Korneliussen, T., Albrechtsen, A., Li, Y. & Wang, J. SNP calling, genotype calling, and sample allele frequency estimation from new-generation sequencing data. PLoS ONE 7, e37558 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Korneliussen, T. S. ANGSD web page. https://www.popgen.dk/angsd/index.php/ANGSD (2013). Accessed 12 September 2020.

  • 35.

    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinf. 15, 1–13 (2014).

    Article  Google Scholar 

  • 36.

    ANGSD. angsd git repository. https://github.com/ANGSD/angsd (2014). Accessed 12 September 2020.

  • 37.

    Dixon, G. caveRAD git repository. https://github.com/grovesdixon/caveRAD (2019). Accessed 12 September 2020.

  • 38.

    Dixon, G., Kitano, J. & Kirkpatrick, M. The origin of a new sex chromosome by introgression between two stickleback fishes. Mol. Biol. Evol. 36, 28–38 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Guo, Y. et al. The effect of strand bias in Illumina short-read sequencing data. BMC Genom. 13, 1–11 (2012).

    CAS  Article  Google Scholar 

  • 41.

    Vieira, F. G., Fumagalli, M., Albrechtsen, A. & Nielsen, R. Estimating inbreeding coefficients from NGS data: impact on genotype calling and allele frequency estimation. Genome Res. 23, 1852–1861 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Fraley, C. & Raftery, A. E. Model-based methods of classification: using the mclust software in chemometrics. J. Stat. Softw. 18, 1–13 (2007).

    Article  Google Scholar 

  • 43.

    Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Fumagalli, M. et al. Quantifying population genetic differentiation from next-generation sequencing data. Genetics 195, 979–992 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Reynolds, J., Weir, B. S. & Cockerham, C. C. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genet. Soc. Am. 105, 767–779 (1983).

    CAS  Article  Google Scholar 

  • 46.

    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution (N. Y.). 38, 1358–1370 (1984).

    CAS  Google Scholar 

  • 47.

    Hahn, M. W. Molecular Population Genetics (Oxford University Press, Oxford, 2018).

    Google Scholar 

  • 48.

    Korneliussen, T. S., Moltke, I., Albrechtsen, A. & Nielsen, R. Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinf. 14, 1–14 (2013).

  • 49.

    Keightley, P. D., Ness, R. W., Halligan, D. L. & Haddrill, P. R. Estimation of the spontaneous mutation rate per nucleotide site in a Drosophila melanogaster full-sib family. Genetics 196, 313–320 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Wright, S. Variability Within and Among Natural Populations (University of Chicago Press, Chicago, 1978).

    Google Scholar 

  • 51.

    Kamimura, Y., Abe, J., Ferreira, R. L. & Yoshizawa, K. Microsatellite markers developed using a next-generation sequencing technique for Neotrogla spp. (Psocodea: Prionoglarididae), cave dwelling insects with sex-reversed genitalia. Entomol. Sci. 22, 48–55 (2019).

    Article  Google Scholar 

  • 52.

    Schäfer, M. A., Orsini, L., McAllister, B. F. & Schlötterer, C. Patterns of microsatellite variation through a transition zone of a chromosomal cline in Drosophila americana. Heredity (Edinb). 97, 291–295 (2006).

    PubMed  Article  CAS  Google Scholar 

  • 53.

    Bradic, M., Beerli, P., García-De Leán, F. J., Esquivel-Bobadilla, S. & Borowsky, R. L. Gene flow and population structure in the Mexican blind cavefish complex (Astyanax mexicanus). BMC Evol. Biol. 12, 9 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Juan, C., Guzik, M. T., Jaume, D. & Cooper, S. J. B. Evolution in caves: Darwin’s ‘wrecks of ancient life’ in the molecular era. Mol. Ecol. 19, 3865–3880 (2010).

    PubMed  Article  Google Scholar 

  • 55.

    Pool, J. E., Hellmann, I., Jensen, J. D. & Nielsen, R. Population genetic inference from genomic sequence variation. Genome Res. 20, 291–300 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Silva, M. S., Martins, R. P. & Ferreira, R. L. Cave lithology determining the structure of the invertebrate communities in the Brazilian Atlantic Rain Forest. Biodivers. Conserv. 20, 1713–1729 (2011).

    Article  Google Scholar 

  • 57.

    Brunet, A. K. & Medellín, R. A. The species-area relationship in bat assemblages of tropical caves. J. Mammal. 82, 1114–1122 (2001).

    Article  Google Scholar 

  • 58.

    Culver, D. C., Christman, M. C., Elliott, W. R., Hobbs, H. H. & Reddell, J. R. The North American obligate cave fauna: regional patterns. Biodivers. Conserv. 12, 441–468 (2003).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Georgina Mace (1953–2020)

    Designing off-grid refrigeration technologies for crop storage in Kenya