in

Potential for large-scale CO2 removal via enhanced rock weathering with croplands

  • 1.

    Intergovernmental Panel on Climate Change (IPCC). Global Warming Of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways (World Meteorological Organization, 2018).

  • 2.

    Kantola, I. B. et al. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. Biol. Lett. 13, 20160714 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 3.

    Zhang, G., Kang, J., Wang, T. & Zhu, C. Review and outlook for agromineral research in agriculture and climate change mitigation. Soil Res. 56, 113–122 (2018).

    Google Scholar 

  • 4.

    Beerling, D. J. et al. Farming with crops and rocks to address global climate, food and soil security. Nat. Plants 4, 138–147 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 5.

    Mercure, J.-F. et al. Macroeconomic impact of stranded fossil fuel assests. Nat. Clim. Chang. 8, 588–593 (2018).

    ADS  Google Scholar 

  • 6.

    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    Google Scholar 

  • 7.

    United Nations Environment Programme The Emissions Gap Report 2018 (United Nations Environment Programme, 2018).

  • 8.

    Hagedorn, G. et al. Concerns of young protesters are justified. Science 364, 139–140 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Hansen, J. et al. Young people’s burden: requirement of negative CO2 emissions. Earth Syst. Dyn 8, 577–616 (2017).

    ADS  Google Scholar 

  • 10.

    Rockström, J. et al. A roadmap for rapid decarbonisation. Science 355, 1269–1271 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 11.

    The Royal Society Greenhouse Gas Removal Technologies (The Royal Society, 2018).

  • 12.

    Pacala, S. et al. Negative Emissions Technologies And Reliable Sequestration (National Academy of Sciences, 2018).

  • 13.

    Seifritz, W. CO2 disposal by means of silicates. Nature 345, 486 (1990).

    ADS  Google Scholar 

  • 14.

    Schuiling, R. D. & Krijgsman, P. Enhanced weathering: an effective and cheap tool to sequester CO2. Clim. Change 74, 349–354 (2006).

    ADS  CAS  Google Scholar 

  • 15.

    Kohler, P., Hartmann, J. & Wolf-Gladrow, D. A. Geoengineering potential of artificially enhanced silicate weathering of olivine. Proc. Natl Acad. Sci. USA 107, 20228–20233 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Hartmann, J. et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev. Geophys. 51, 113–149 (2013).

    ADS  Google Scholar 

  • 17.

    Taylor, L. L. et al. Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nat. Clim. Chang. 6, 402–406 (2016).

    ADS  CAS  Google Scholar 

  • 18.

    Kelland, M. E. et al. Increased yield and CO2 sequestration potential with the C4 cereal crop Sorghum bicolor cultivated in basaltic rock dust amended agricultural soil. Glob. Change Biol. 26, 3658–3676 (2020).

    ADS  Google Scholar 

  • 19.

    Renforth, P. & Henderson, G. Assessing ocean alkalinity for carbon sequestration. Rev. Geophys. 55, 636–674 (2017).

    ADS  Google Scholar 

  • 20.

    Smith, P. et al. Land-based options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goals. Annu. Rev. Environ. Res. 44, 255–286 (2019).

    Google Scholar 

  • 21.

    Renforth, P. The potential of enhanced weathering in the UK. Int. J. Greenhouse Gas Control 10, 229–243 (2012).

    CAS  Google Scholar 

  • 22.

    Strefler, J. et al. Potential and costs of carbon dioxide removal by enhanced weathering of rocks. Environ. Res. Lett. 13, 034010 (2018).

    ADS  Google Scholar 

  • 23.

    Fuss, S. et al. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).

    ADS  Google Scholar 

  • 24.

    Baik, E. et al. Geospatial analysis of near-term potential for carbon-negative bioenergy in the United States. Proc. Natl Acad. Sci. USA 115, 3290–3295 (2018).

    CAS  Google Scholar 

  • 25.

    Heck, V., Gerten, D., Lucht, W. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Chang. 8, 151–155 (2018).

    ADS  CAS  Google Scholar 

  • 26.

    Amann, T. & Hartmann, J. Ideas and perspectives: synergies from co-deployment of negative emissions technologies. Biogeosciences 16, 2949–2960 (2019).

    ADS  CAS  Google Scholar 

  • 27.

    Mayer, A. et al. The potential of agricultural land management to contribute to lower global surface temperature. Sci. Adv. 4, eaaq0932 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Groffman, P. M. et al. Calcium additions and microbial nitrogen cycle processes in a northern hardwood forest. Ecosystems 9, 1289–1305 (2006).

    CAS  Google Scholar 

  • 29.

    Dietzen, C., Harrison, R. & Michelsen-Correa, S. Effectiveness of enhanced mineral weathering as a carbon sequestration tool and alternative to agricultural lime: an incubation experiment. Int. J. Greenhouse Gas Control 74, 251–258 (2018).

    CAS  Google Scholar 

  • 30.

    Smith, P., Haszeldine, R. S. & Smith, S. M. Preliminary assessment of the potential for, and limitations to, terrestrial negative emissions technologies in the UK. Environ. Sci. Process. Impacts 18, 1400–1405 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 31.

    DeLucia, E., Kantola, I., Blanc-Betes, E., Bernacchi, C. & Beerling, D. J. Basalt application for carbon sequestration reduces nitrous oxide fluxes from cropland. Geophys. Res. Abstr. 21, EGU2019–EGU4500 (2019).

    Google Scholar 

  • 32.

    Das, S. et al. Cropping with slag to address soil, environment, and food security. Front. Microbiol. 10, 1320 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 33.

    Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 34.

    Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Chang. 6, 360–369 (2016).

    ADS  Google Scholar 

  • 35.

    Crowder, D. W. & Reganold, J. P. Financial competitiveness of organic agriculture on a global scale. Proc. Natl Acad. Sci. USA 112, 7611–7616 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Bebbington, A. J. & Bury, J. T. Institutional challenges for mining and sustainability in Peru. Proc. Natl Acad. Sci. USA 106, 17296–17301 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Renforth, P. et al. Silicate production and availability for mineral carbonation. Environ. Sci. Technol. 45, 2035–2041 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Renforth, P. The negative emission potential of alkaline materials. Nat. Commun. 10, 1401 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Tubana, B. S., Babu, T. & Datnoff, L. E. A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Sci. 181, 393–411 (2016).

    CAS  Google Scholar 

  • 40.

    Washbourne, C.-L. et al. Rapid removal of atmospheric CO2 in urban soils. Environ. Sci. Technol. 49, 5434–5440 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Lekakh, S. N. et al. Kinetics of aqueous leaching and carbonization of steelmaking slag. Metallurg. Mater. Trans. B 39, 125–134 (2008).

    ADS  Google Scholar 

  • 42.

    Haynes, R. J., Belyaeva, O. N. & Kingston, G. Evaluation of industrial waste sources of fertilizer silicon using chemical extractions and plant uptake. J. Plant Nutr. Soil Sci. 176, 238–248 (2013).

    CAS  Google Scholar 

  • 43.

    Rodd, A. V. et al. Surface application of cement kiln dust and lime to forage land: effect on forage yield, tissue concentration and accumulation of nutrients. Can. J. Soil Sci. 90, 201–213 (2010).

    CAS  Google Scholar 

  • 44.

    Ramos, C.G. et al. Evaluation of soil re-mineralizer from by-product of volcanic rock mining: experimental proof using black oats and maize crops. Nat. Res. Res. 10.1007/s11053–019–09529-x (2019).

  • 45.

    Savant, N. K., Datnoff, L. E. & Snyder, G. H. Depletion of plant-available silicon in soils: a possible cause of declining rice yields. Commun. Soil Sci. Plant Anal. 28, 1245–1252 (1997).

    CAS  Google Scholar 

  • 46.

    Ning, D. et al. Impacts of steel-slag-based fertilizer on soil acidity and silicon availability and metals-immobilization in a paddy soil. PLoS One 11, e0168163 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Chen, J. Rapid urbanization in China: a real challenge to soil protection and food security. Catena 69, 1–15 (2007).

    Google Scholar 

  • 48.

    United Nations Global Land Outlook 1st edn (United Nations Convention to Combat Desertification, 2017).

  • 49.

    Smith, M. R. & Myers, S. S. Impact of anthropogenic CO2 emissions on global human nutrition. Nat. Clim. Chang. 8, 834–839 (2018).

    ADS  CAS  Google Scholar 

  • 50.

    Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Pidgeon, N. F. & Spence, E. Perceptions of enhanced weathering as a biological negative emissions option. Biol. Lett. 13, 20170024 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Daval, D., Calvarusa, C., Guyut, F. & Turpault, M.-P. Time-dependent feldspar dissolution rates resulting from surface passivation: experimental evidence and geochemical implications. Earth Planet. Sci. Lett. 498, 226–236 (2018).

    ADS  CAS  Google Scholar 

  • 53.

    Ricke, K., Drout, L., Caldeira, K. & Tavoni, M. Country-level social cost of carbon. Nat. Clim. Chang. 8, 895–900 (2018).

    ADS  CAS  Google Scholar 

  • 54.

    Cox, E., Pidgeon, N. F., Spence, E. M. & Thomas, G. Blurred lines: the ethics and policy of greenhouse gas removal at scale. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2018.00038 (2018).

  • 55.

    Berner, R. A. Rate control of mineral dissolution under Earth surface conditions. Am. J. Sci. 278, 1235–1252 (1978).

    ADS  CAS  Google Scholar 

  • 56.

    Maher, K. The dependence of chemical weathering rates on fluid residence time. Earth Planet. Sci. Lett. 294, 101–110 (2010).

    ADS  CAS  Google Scholar 

  • 57.

    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 58.

    Huang, Z. W. et al. Reconstruction of global gridded monthly sectoral water withdrawals for 1971-2010 and analysis of their spatiotemporal patterns. Hydrol. Earth Syst. Sci. 22, 2117–2133 (2018).

    ADS  Google Scholar 

  • 59.

    Siebert, S. & Doll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384, 198–217 (2010).

    ADS  Google Scholar 

  • 60.

    Aagaard, P. & Helgeson, H. C. Thermodynamic and kinetic constraints on reaction-rates among minerals and aqueous-solutions. 1. Theoretical considerations. Am. J. Sci. 282, 237–285 (1982).

    CAS  Google Scholar 

  • 61.

    Lasaga, A. C. Chemical-kinetics of water-rock interactions. J. Geophys. Res. 89, 4009–4025 (1984).

    ADS  CAS  Google Scholar 

  • 62.

    Brantley, S. L., Kubicki, J. D. & White, A. F. Kinetics of Water–Rock Interaction (Springer, 2008).

  • 63.

    Harley, A. D. & Gilkes, R. J. Factors influencing the release of plant nutrient elements from silicate rock powders: a geochemical overview. Nutr. Cycl. Agroecosyst. 56, 11–36 (2000).

    CAS  Google Scholar 

  • 64.

    Taylor, L. L. et al. Biological evolution and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7, 171–191 (2009).

    ADS  CAS  Google Scholar 

  • 65.

    Nelson, P. N. & Su, N. Soil pH buffering capacity: a descriptive function and its application to some acidic tropical soils. Aust. J. Soil Sci. 48, 201–207 (2010).

    Google Scholar 

  • 66.

    Cerling, T. Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. Am. J. Sci. 291, 377–400 (1991).

    ADS  CAS  Google Scholar 

  • 67.

    Taylor, L., Banwart, S. A., Leake, J. R. & Beerling, D. J. Modelling the evolutionary rise of ectomycorrhizal on sub-surface weathering environments and the geochemical carbon cycle. Am. J. Sci. 311, 369–403 (2011).

    ADS  CAS  Google Scholar 

  • 68.

    Banwart, S. A., Berg, A. & Beerling, D. J. Process-based modeling of silicate mineral weathering responses to increasing atmospheric CO2 and climate change. Glob. Biogeochem. Cycles 23, GB4013 (2009).

    ADS  Google Scholar 

  • 69.

    Petavratzi, E., Kingman, S. & Lowndes, I. Particulates from mining operations: a review of sources, effects and regulations. Miner. Eng. 18, 1183–1199 (2005).

    CAS  Google Scholar 

  • 70.

    Cepuritis, R., Garboczi, E. J., Ferraris, C. F., Jacobsen, S. & Sorensen, B. E. Measurement of particle size distribution and specific surface area for crushed concrete aggregate fines. Adv. Powder Technol. 28, 706–720 (2017).

    CAS  Google Scholar 

  • 71.

    Navarre-Sitchler, A. & Brantley, S. Basalt weathering across scales. Earth Planet. Sci. Lett. 261, 321–334 (2007).

    ADS  CAS  Google Scholar 

  • 72.

    Brantley, S. L. & Mellott, N. P. Surface area and porosity of primary silicate minerals. Am. Mineral. 85, 1767–1783 (2000).

    ADS  CAS  Google Scholar 

  • 73.

    Moosdorf, N., Renforth, P. & Hartmann, J. Carbon dioxide efficiency of terrestrial weathering. Environ. Sci. Technol. 48, 4809–4816 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 74.

    Salisbury, J. E. et al. Seasonal observations of surface waters in two Gulf of Maine estuary-plume systems: relationships between watershed attributes, optical measurements and surface p CO2. Estuar. Coast. Shelf Sci. 77, 245–252 (2008).

    ADS  Google Scholar 

  • 75.

    Darling, P. & Society for Mining, Metallurgy and Exploration (U.S.). SME Mining Engineering Handbook 3rd edn (Society for Mining, Metallurgy and Exploration, 2011).

  • 76.

    InfoMine, Mining Cost Service http://www.infomine.com/ (Infomine, 2009).

  • 77.

    Tromans, D. Mineral comminution: energy efficiency considerations. Min. Eng. 21, 613–620 (2008).

    CAS  Google Scholar 

  • 78.

    Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem. Geophys. Geosyst. 13, Q12004 (2012).

    ADS  Google Scholar 

  • 79.

    Protected Planet: The World Database on Protected Areas (WDPA)/The Global Database on Protected Areas Management Effectiveness (GD-PAME) https://www.protectedplanet.net/ (UNEP-WCMC and IUCN, 2018).

  • 80.

    ROTARU, A. S. et al. Modelling a logistic problem by creating an origin-destination cost matrix using GIS technology. Bull. UASVM Horticulture 71, https://doi.org/10.15835/buasvmcn-hort:9697 (2014).

  • 81.

    Osorio, C. Dynamic origin-destination matrix calibration for large-scale network simulators. Transport. Res. C 98, 186–206 (2019).

    Google Scholar 

  • 82.

    International Energy Agency The Future of Rail, Opportunities for Energy and the Environment (International Energy Agency, 2019).

  • 83.

    Liimatainen, H., van Vliet, O. & Aplyn, D. The potential of electric trucks—an international commodity-level analysis. Appl. Energy 236, 804–814 (2019).

    Google Scholar 

  • 84.

    GDP (current US$) https://data.worldbank.org/indicator/NY.GDP.MKTP.CD (The World Bank, 2016).

  • 85.

    Bauer, N. et al. Shared socio-economic pathways of the energy sector – quantifying the narratives. Glob. Environ. Change 42, 316–330 (2017).

    Google Scholar 

  • 86.

    Xi, F. et al. Substantial global carbon uptake by cement carbonation. Nat. Geosci. 9, 880–883 (2016).

    ADS  CAS  Google Scholar 

  • 87.

    U.S. Geological Survey. Mineral Commodity Summaries 2006 (US Geological Survey, 2006).


  • Source: Ecology - nature.com

    Innovations in environmental training for the mining industry

    Synergy effect of peroxidase enzymes and Fenton reactions greatly increase the anaerobic oxidation of soil organic matter